【題目】4名運(yùn)動員參加一次乒乓球比賽,每名運(yùn)動員都賽場并決出勝負(fù).設(shè)第位運(yùn)動員共勝場,負(fù),則錯誤的結(jié)論是( )

A.

B.

C. 為定值,與各場比賽的結(jié)果無關(guān)

D. 為定值,與各場比賽結(jié)果無關(guān)

【答案】D

【解析】

對每一個選項逐一分析得解.

由題得所有勝的場數(shù)為6場,所有負(fù)的場數(shù)為6場,

對于選項A,根據(jù)已知得到所有勝的場數(shù)的和和負(fù)的場數(shù)的和是相等的,所以,所以該選項是正確的;

對于選項B,假設(shè)四個運(yùn)動員勝的場數(shù)分別為12、12,負(fù)的場數(shù)分別為21、21,顯然滿足,所以該選項是正確的;

對于選項C, 與各場比賽的結(jié)果無關(guān),所以該選項是正確的;

對于選項D,不一定為定值,如勝的場數(shù)可以是1,2,1,2,也可以是1,1,1,3,但是,所以該選項是錯誤的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過的直線PA,PB與雙曲線分別交于點MN,直線MNx軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的極值;

(2)設(shè)函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,分別是橢圓的左,右焦點,點P是橢圓E上一點,滿足軸,

1)求橢圓E的離心率;

2)過點的直線l與橢圓E交于兩點A,B,若在橢圓B上存在點Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y24x+30,過原點的直線l與圓C有公共點.

1)求直線l斜率k的取值范圍;

2)已知O為坐標(biāo)原點,點P為圓C上的任意一點,求線段OP的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱錐PABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2BD=.

1)求證:BD⊥平面PAC;

2)求二面角PCDB余弦值的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為且四個頂點構(gòu)成面積為的菱形.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點且斜率不為0的直線與橢圓交于,兩點,記中點為,坐標(biāo)原點為,直線交橢圓于,兩點,當(dāng)四邊形的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】612日,上海市發(fā)布了《上海市生活垃圾分類投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類.某幢樓前有四個垃圾桶,分別標(biāo)有可回收物有害垃圾、濕垃圾干垃圾,小明同學(xué)要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報紙(可回收物)全部投入到這四個桶中,若每種垃圾投放到每個桶中都是等可能的,那么隨機(jī)事件“4種垃圾中至少有2種投入正確的桶中的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).

(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點,求的最小值,并求相應(yīng)的點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案