11.已知直線l:y=2x+n,n∈R,圓M的圓心在y軸,且過點(diǎn)(1,1).
(1)當(dāng)n=-2時(shí),若圓M與直線l相切,求該圓的方程;
(2)設(shè)直線l關(guān)于y軸對(duì)稱的直線為l′,試問直線l′與拋物線N:x2=6y是否相切?如果相切,求出切點(diǎn)坐標(biāo);如果不想切,請(qǐng)說明理由.

分析 (1)利用待定系數(shù)法,求出圓的圓心與半徑即可得到圓的標(biāo)準(zhǔn)方程.
(2)求出對(duì)稱直線的方程與拋物線聯(lián)立方程組,利用相切求解即可.

解答 解:(1)設(shè)M的方程為x2+(y-b)2=r2,
(1,1)代入,可得1+(1-b)2=r2,①
∵直線l與圓M相切,∴$\frac{|-b-2|}{\sqrt{5}}$=r,②
由①②可得b=3或$\frac{1}{2}$,
∴M的方程為x2+(y-3)2=5,或x2+(y-$\frac{1}{2}$)2=$\frac{5}{4}$,
(2)因?yàn)橹本l的方程為y=2x+n
所以直線l′的方程為y=-2x+n.
與拋物線聯(lián)立得x2+12x-6n=0.
△=144+24n
①當(dāng)n=-6,即△=0時(shí),直線l′與拋物線C相切;,切點(diǎn)坐標(biāo)為(-6,6)
②當(dāng)n≠-6,即△≠0時(shí),直線l′與拋物線C不相切.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,圓的方程的求法,以及對(duì)稱知識(shí)的應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y≤2\\ x≥0\\ y≥0\end{array}\right.$,則當(dāng)y≤ax+a-1恒成立時(shí),實(shí)數(shù)a的取值范圍是a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)兩條直線x+y-2=0,3x-y-2=0的交點(diǎn)為M,若點(diǎn)M在圓(x-m)2+y2=5內(nèi),則實(shí)數(shù)m的取值范圍為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F作圓x2+y2=a2的切線,切點(diǎn)為M,延長FM交雙曲線右支于點(diǎn)P,若M為FP的中點(diǎn),則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若集合A={2,3},B={x|x2-5x+6=0},則A∩B=( 。
A.{x=2,x=3}B.{(2,3)}C.{2,3}D.2,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={-2,0,2},B={x|x2-x-2=0},則A∩B=(  )
A.B.{0}C.{2}D.{-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}是各項(xiàng)均不為零的等差數(shù)列,Sn為其前n項(xiàng)和,且${a_n}=\sqrt{{S_{2n-1}}}({n∈{N^*}})$.若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{n+8}{n}$對(duì)任意n∈N*恒成立,則實(shí)數(shù)λ的最大值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.六名同學(xué)A、B、C、D、E、F舉行象棋比賽,采取單循環(huán)賽制,即參加比賽的每兩個(gè)人之間僅賽一局.第一天,A、B各參加了3局比賽,C、D各參加了4局比賽,E參加了2局比賽,且A與C沒有比賽過,B與D也沒有比賽過.那么F在第一天參加的比賽局?jǐn)?shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案