19.設兩條直線x+y-2=0,3x-y-2=0的交點為M,若點M在圓(x-m)2+y2=5內,則實數(shù)m的取值范圍為(-1,3).

分析 求出兩條直線的交點坐標,以及圓的圓心的距離小于半徑,求解即可得答案.

解答 解:由題意可知:$\left\{\begin{array}{l}{x+y-2=0}\\{3x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,交點(1,1),
交點M在圓(x-m)2+y2=5的內部,
可得(1-m)2+1<5,
解得-1<m<3.
∴實數(shù)m的取值范圍為:(-1,3).
故答案為:(-1,3).

點評 本題考查點與圓的位置關系的應用,考查計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點A(-1,1),B(2,-2),若直線l:x+my+m=0與線段AB(含端點)相交,則實數(shù)m的取值范圍是(  )
A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,2]C.(-∞,-2]∪[-$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓C過點$A(\frac{3}{4},\;0)$,且與直線$l:\;x=-\frac{3}{4}$相切,
(I)求圓心C的軌跡方程;
(II) O為原點,圓心C的軌跡上兩點M、N(不同于點O)滿足$\overrightarrow{OM}•\overrightarrow{ON}=0$,已知$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OM}$,$\overrightarrow{OQ}=\frac{1}{3}\overrightarrow{ON}$,證明直線PQ過定點,并求出該定點坐標和△APQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(x)是定義在(-∞,+∞)上的奇函數(shù),當x>0時,f(x)=4x-x2,若函數(shù)f(x)在區(qū)間[t,4]上的值域為[-4,4],則實數(shù)t的取值范圍是[-2-2$\sqrt{2}$,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-m|$\overrightarrow{a}$+$\overrightarrow$|+1,x∈[-$\frac{π}{3}$,$\frac{π}{4}$],m∈R.
(1)當m=0時,求f($\frac{π}{6}$)的值;
(2)若f(x)的最小值為-1,求實數(shù)m的值;
(3)是否存在實數(shù)m,使函數(shù)g(x)=f(x)+$\frac{24}{49}$m2,x∈[-$\frac{π}{3}$,$\frac{π}{4}$]有四個不同的零點?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.(文)設f(x)=sinx-2cosx+1的導函數(shù)為f′(x),則f′($\frac{3π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知直線l:y=2x+n,n∈R,圓M的圓心在y軸,且過點(1,1).
(1)當n=-2時,若圓M與直線l相切,求該圓的方程;
(2)設直線l關于y軸對稱的直線為l′,試問直線l′與拋物線N:x2=6y是否相切?如果相切,求出切點坐標;如果不想切,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設集合U=R,集合$A=\left\{{x\left|{{{log}_2}x<1}\right.}\right\},B=\left\{{x\left|{{x^2}-2x-3≤0}\right.}\right\}$,則(∁UA)∩B=( 。
A.[2,3]B.[-1,2]C.[-1,0]D.[-1,0]∪[2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c,若A,B,C成等差數(shù)列,2a,2b,2c成等比數(shù)列,則sinAcosBsinC=( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{8}$D.$\frac{\sqrt{3}}{8}$

查看答案和解析>>

同步練習冊答案