9.已知數(shù)列{an}為等差數(shù)列,a1+a7=20,a11-a8=18.
(1)求數(shù)列{an}的通項公式;
(2)若在數(shù)列{an}中的每相鄰兩項之間插入2個數(shù),使之構(gòu)成新的等差數(shù)列{bn},求新的等差數(shù)列{bn}的通項公式.

分析 (1)可設等差數(shù)列{an}的公差為d,從而a7=a1+6d,a11=a1+10d,a8=a1+7d,從而帶入a1+a7=20,a11-a8=18便可得出關(guān)于a1,d的方程組,解出a1=-8,d=6,這樣即可得出數(shù)列{an}的通項公式;
(2)根據(jù)題意可知,b1=a1=-8,b4=a2=-2,可設等差數(shù)列{bn}的公差為d′,從而可以求出d′,這樣便可得出等差數(shù)列{bn}的通項公式.

解答 解:(1)設數(shù)列{an}的公差為d,則由條件得:$\left\{\begin{array}{l}{2{a}_{1}+6d=20}\\{3d=18}\end{array}\right.$;
解得$\left\{\begin{array}{l}{{a}_{1}=-8}\\{d=6}\end{array}\right.$;
∴an=-8+6(n-1)=6n-14;
即an=6n-14;
(2)根據(jù)題意數(shù)列a1,b2,b3,a2,…為等差數(shù)列,
設{bn}的公差為d′,且b1=a1=-8,b4=a2=-2;
∴-8+3d′=-2;
∴d′=2;
∴bn=-8+2(n-1)=2n-10;
即bn=2n-10.

點評 考查等差數(shù)列的概念,以及等差數(shù)列的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知a為實數(shù),函數(shù)f(x)=alnx+x2-4x.
(1)當a=1時,求函數(shù)f(x)在x=1處的切線方程;
(2)設g(x)=(a-2)x,若?x∈[$\frac{1}{e}$,e],使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=e2x-aex+2x是R上的增函數(shù),則實數(shù)a的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)證明y=f(g(x))的反函數(shù)為y=g-1(f-1(x));
(2)F(x)=f(-x),G(x)=f-1(x),若G(x)的反函數(shù)是F(x),證明f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知雙曲線x2-$\frac{{y}^{2}}{3}$=1與直線y=m(x-2)交于兩點P(x1,y1),Q(x2,y2)且P與Q分別在雙曲線的左、右分支上.
(1)證明x1及x2滿足方程(m2-3)x2-4m2x+(4m2+3)=0;
(2)以m表示x1+x2及x1x2;
(3)求m的取值范圍;
(4)設O為原點,若∠POQ為直角,證明8x${\;}_{1}^{2}$x${\;}_{2}^{2}$-9(x${\;}_{1}^{2}$+x${\;}_{2}^{2}$)+9=0,并由此求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.(2x-3y)5展開式中二項式系數(shù)最大的項是720x3y2或-1080x2y3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求函數(shù)y=x的二階導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設袋中有80個球,其中40個紅球,40個黑球,這些球除顏色外完全相同,從中任取兩球,則所取的兩球同色的概率為( 。
A.$\frac{39}{79}$B.$\frac{1}{80}$C.$\frac{1}{2}$D.$\frac{41}{80}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)y=ln(2x)的圖象與x軸相交于點P,則該函數(shù)在點P處的切線方程為( 。
A.y=x-1B.y=x-$\frac{1}{2}$C.y=2x-1D.y=$\frac{1}{2}x$-$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案