如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成的角;
(Ⅲ)求點(diǎn)到平面的距離.
(Ⅰ)見(jiàn)解析
(Ⅱ)直線與平面所成的角為
(Ⅲ)點(diǎn)到平面的距離等于
(Ⅰ)設(shè)與交點(diǎn)為,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),
則,∴,∴,∴,
又∵,∴,
又∵,∴,
∴,∴
又∵底面,∴,∴平面,
∵平面,∴平面平面…………………………………(4分)
(Ⅱ)連結(jié),過(guò)點(diǎn)作于點(diǎn),
則由(Ⅰ)知平面平面,
且是交線,根據(jù)面面垂直的性質(zhì),
得平面,從而即
為直線與平面所成的角.
在中,,
在中,
. 所以有,
即直線與平面所成的角為…………………………………(8分)
(Ⅲ)由于,所以可知點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,即. 在中,,
從而點(diǎn)到平面的距離等于………………………………………………(12分)
解法二:如圖所示,以點(diǎn)為坐標(biāo)原點(diǎn),
直線分別為軸,
建立空間直角坐標(biāo)系,
則相關(guān)點(diǎn)的坐標(biāo)為
,,,.
(Ⅰ)由于,,
,
所以,
,
所以,
而,所以平面,∵平面,
∴平面平面……………………………………………………………(4分)
(Ⅱ)設(shè)是平面的一個(gè)法向量,則,
由于,,所以有
,
令,則,即,
再設(shè)直線與平面所成的角為,而,
所以,
∴,因此直線與平面所成的角為………………(8分)
(Ⅲ)由(Ⅱ)知是平面的一個(gè)法向量,而,
所以點(diǎn)到平面的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,四棱錐的底面是邊長(zhǎng)為1的菱形,,
E是CD的中點(diǎn),PA底面ABCD,。
(I)證明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,四棱錐的底面是邊長(zhǎng)為1的正方形,,,點(diǎn)是棱的中點(diǎn)。
(1)求證;
(2)求異面直線與所成的角的大;
(3)求面與面所成二面角的大小。
(第18題圖)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年四川省高二下學(xué)期5月月考數(shù)學(xué)試題 題型:解答題
(本題滿分12分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成的角;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校校招生全國(guó)統(tǒng)一考試數(shù)學(xué)文史類(湖南卷) 題型:解答題
如圖所示,四棱錐的底面是邊長(zhǎng)為1的菱形,,
E是CD的中點(diǎn),PA底面ABCD,。
(I)證明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com