【題目】為了研究某種農作物在特定溫度下(要求最高溫度滿足:)的生長狀況,某農學家需要在十月份去某地進行為期十天的連續(xù)觀察試驗.現有關于該地區(qū)10月份歷年10月份日平均最高溫度和日平均最低溫度(單位:)的記錄如下:
(Ⅰ)根據本次試驗目的和試驗周期,寫出農學家觀察試驗的起始日期.
(Ⅱ)設該地區(qū)今年10月上旬(10月1日至10月10日)的最高溫度的方差和最低溫度的方差分別為,估計的大?(直接寫出結論即可).
(Ⅲ)從10月份31天中隨機選擇連續(xù)三天,求所選3天每天日平均最高溫度值都在[27,30]之間的概率.
【答案】(Ⅰ)7日或8日;(Ⅱ)最高溫度的方差大;(Ⅲ).
【解析】
試題分析:(Ⅰ)從圖中可以看出,從7日到17日時,最高溫度滿足,因此選擇起始日期為7日或8日;(Ⅱ)從圖中可以看出,前10天的最高溫度與其均值判別較大,最低溫度與均值相差較小,因此最高溫度的方差大;(Ⅲ)隨機選擇連續(xù)三天,共有29種可能,滿足題意的選擇有10種可能(從7日到17日可有10種可能),由古典概型概率公式可得結論.
試題解析:
(Ⅰ)農學家觀察試驗的起始日期為7日或8日.
(少寫一個扣1分)
(Ⅱ)最高溫度的方差大.
(Ⅲ)設“連續(xù)三天平均最高溫度值都在[27,30]之間”為事件A,
則基本事件空間可以設為,共計29個基本事件
由圖表可以看出,事件A中包含10個基本事件,
所以,
所選3天每天日平均最高溫度值都在[27,30]之間的概率為.
科目:高中數學 來源: 題型:
【題目】若函數f(x)=a(x﹣2)ex+lnx+ 在(0,2)上存在兩個極值點,則a的取值范圍為( )
A.(﹣∞,﹣ )
B.(﹣ , )∪(1,+∞)
C.(﹣∞,﹣ )
D.(﹣∞,﹣ )∪(﹣﹣ ,﹣ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學早上8點開始上課,若學生小典與小方均在至之間到校,且兩人在該時間段的任何時刻到校都是等可能的,則小典比小方至少早5分鐘到校的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知焦距為2的橢圓W: =1(a>b>0)的左、右焦點分別為A1 , A2 , 上、下頂點分別為B1 , B2 , 點M(x0 , y0)為橢圓W上不在坐標軸上的任意一點,且四條直線MA1 , MA2 , MB1 , MB2的斜率之積為 .
(1)求橢圓W的標準方程;
(2)如圖所示,點A,D是橢圓W上兩點,點A與點B關于原點對稱,AD⊥AB,點C在x軸上,且AC與x軸垂直,求證:B,C,D三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 在處有極值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在上的最大值和最小值;
(Ⅲ)在下面的坐標系中作出在上的圖象,若方程在 上有2個不同的實數解,結合圖象求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設該廠用所有原來編制個花籃, 個花盆.
(Ⅰ)列出滿足的關系式,并畫出相應的平面區(qū)域;
(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數,可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有2個紅球A1 ,A2和1個白球B的甲箱與裝有2個紅球a1 ,a2和2個白球b1,b2的乙箱中,各隨機摸出1個球.若摸出的2個球都是紅球則中獎,否則不中獎.
(1)用球的標號列出所有可能的摸出結果;
(2)有人認為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率.你認為正確嗎?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com