【題目】如圖所示,平面多邊形中,AE=ED,AB=BD,且,現(xiàn)沿直線,將折起,得到四棱錐.
(1)求證: ;
(2)若,求PD與平面所成角的正弦值.
【答案】(1)見(jiàn)解析;(2)正弦值為.
【解析】試題分析:(1)取的中點(diǎn),連,由題意可得且,則有平面,可得結(jié)論;(2)法一:以O為坐標(biāo)原點(diǎn),OB, OD, OP所在的直線為x,y,z軸建立空間直角坐標(biāo)系,求出平面PAB的一個(gè)法向量,再利用向量的夾角公式求解即可;法二:利用等積法:由得= ,求出點(diǎn)D到平面PAB的距離為h,設(shè)PD與平面所成角為,則===.
解析:
(1)證明:取的中點(diǎn),連,
∵,即,
∴且,
又,
∴平面,
而平面,
∴.
(2)∵OP=1,OB=2,
,
∴,
∴OP、OB、OD兩兩互相垂直,
以O為坐標(biāo)原點(diǎn),OB, OD, OP所在的直線為x,y,z軸建立如圖所示空間直角坐標(biāo)系,
則,
,
設(shè)為平面PAB的一個(gè)法向量,則
由,
令則得,
∴,
設(shè)PD與平面所成角為,
則====,
故,
即PD與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()若曲線在點(diǎn)處的切線與直線平行,求的值.
()在(1)的條件下,求函數(shù)的單調(diào)區(qū)間和極值.
()在(1)的條件下,試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信支付誕生于微信紅包,早期知識(shí)作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來(lái)微信支付不僅可以用來(lái)發(fā)紅包,還可以用來(lái)支付,現(xiàn)在微信支付被越來(lái)越多的人們所接受,現(xiàn)從某市市民中隨機(jī)抽取300為對(duì)是否使用微信支付進(jìn)行調(diào)查,得到下列的列聯(lián)表:
年輕人 | 非年輕人 | 總計(jì) | |
經(jīng)常使用微信支付 | 165 | 225 | |
不常使用微信支付 | |||
合計(jì) | 90 | 300 |
根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計(jì)學(xué)的結(jié)論是:由__________的把握認(rèn)為“使用微信支付與年齡有關(guān)”。
|
| ||||
|
其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校名學(xué)生的數(shù)學(xué)期中考試成績(jī)頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是,,,,,.
求圖中的值;
根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生的平均分;
若這名學(xué)生的數(shù)學(xué)成績(jī)中,某些分?jǐn)?shù)段的人數(shù)與英語(yǔ)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如表所示,求英語(yǔ)成績(jī)?cè)?/span>的人數(shù).
分?jǐn)?shù)段 | |||
:5 | 1:2 | 1:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)要從高一年級(jí)甲、乙兩個(gè)班級(jí)中選擇一個(gè)班參加市電視臺(tái)組織的“環(huán)保知識(shí)競(jìng)賽”.該校對(duì)甲、乙兩班的參賽選手(每班7人)進(jìn)行了一次環(huán)境知識(shí)測(cè)試,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85分,乙班學(xué)生成績(jī)的中位數(shù)是85.
(1)求的值;
(2)根據(jù)莖葉圖,求甲、乙兩班同學(xué)成績(jī)的方差的大小,并從統(tǒng)計(jì)學(xué)角度分析,該校應(yīng)選擇甲班還是乙班參賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若時(shí),對(duì)任意的都成立,求實(shí)數(shù)的取值范圍;
(2)求關(guān)于的不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B的對(duì)邊分別為a,b,根據(jù)下列條件解三角形,其中只有一解的為( )
A.a=50,b=30,A=60°B.a=30,b=65,A=30°
C.a=30,b=50,A=30°D.a=30,b=60,A=30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形的邊長(zhǎng)為2,點(diǎn)為的中點(diǎn).以為圓心,為半徑,作弧交于點(diǎn).若為劣弧上的動(dòng)點(diǎn),則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的左右頂點(diǎn)分別是,離心率為,設(shè)點(diǎn),連接交橢圓于點(diǎn),坐標(biāo)原點(diǎn)是.
(1)證明: ;
(2)設(shè)三角形的面積為,四邊形的面積為, 若 的最小值為1,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com