(本題滿分12分)已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
解:(1)由已知得橢圓的長半軸a=2,
半焦距c=,則短半軸b=1.
又橢圓的焦點在x軸上, ∴橢圓的標準方程為…………… 6分
(2)設線段PA的中點為M(x,y) ,點P的坐標是(x0,y0),
,得
由,點P在橢圓上,得,
∴線段PA中點M的軌跡方程是…………… 12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓C1=1(0<b<2)的離心率等于,拋物線C2x2=2py(p>0)的焦點在橢圓C1的頂點上.
(Ⅰ)求拋物線C2的方程;
(Ⅱ)若過M(-1,0)的直線l與拋物線C2交于E、F兩點,又過E、F作拋物線C2的切線l1l2,當l1l2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓x2+(m+3)y2m(m>0)的離心率e,求m的值及橢圓的長軸和短軸的長及頂點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的焦點分別為,直線軸于點,且

(1)試求橢圓的方程;
(2)過分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的弦被點(4,2)平分,則此弦所在的直線方程為(  )
A.x-2y="0" B.x+2y-4="0" C.2x+13y-14="0" D.x+2y-8=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的左、右焦點為,過點斜率為正數(shù)的直線交兩點,且成等差數(shù)列。
(Ⅰ)求的離心率;
(Ⅱ)若直線y=kx(k<0)與交于C、D兩點,求使四邊形ABCD面積S最大時k的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點,作軸的垂線交橢圓于點,為右焦點。若,則橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(18分)已知橢圓C:,在曲線C上是否存在不同兩點A、B關于直線(m為常數(shù))對稱?若存在,求出滿足的條件;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是橢圓()的半焦距,則的取值范圍是___________

查看答案和解析>>

同步練習冊答案