【題目】如圖,在四棱錐中,平面,點中點,底面為梯形,,,.

(1)證明:平面

(2)若四棱錐的體積為4,求點到平面的距離.

【答案】(1)詳見解析;(2).

【解析】

(1)取中點,連接,,根據(jù)平行四邊形的性質(zhì),證得,再利用線面平行的判定定理,即可證得平面.

(2)設,利用四棱錐的體積,求得,又由平面知,點到平面的距離等于點到平面的距離,過,證得平面,即可求得答案。

(1)如圖所示,取中點,連接,

中點,∴,

,,∴,

∴四邊形為平行四邊形,∴.

平面,平面,∴平面.

(2)設,則,

是直角梯形,平面知,

則四棱錐的體積為,解得

平面知,點到平面的距離等于點到平面的距離,

,垂足為,

平面,得,

,∴平面

平面,∴,∴平面.

,

到平面的距離為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某幼兒園舉辦“yue”主題系列活動——“悅”動越健康親子運動打卡活動,為了解小朋友堅持打卡的情況,對該幼兒園所有小朋友進行了調(diào)查,調(diào)查結(jié)果如下表:

打卡天數(shù)

17

18

19

20

21

男生人數(shù)

3

5

3

7

2

女生人數(shù)

3

5

5

7

3

1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);

2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,直線,直線 .以極點為原點,極軸為軸的正半軸建立平面直角坐標系.

(1)求直線,的直角坐標方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),若,,使得不等式成立,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上任意一點到其焦點的距離的最小值為1.,為拋物線上的兩動點(、不重合且均異于原點),為坐標原點,直線、的傾斜角分別為,.

1)求拋物線方程;

2)若,求證直線過定點;

3)若為定值),探求直線是否過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點作斜率為的直線與拋物線交于不同的兩點,

1)求的取值范圍;

2)若為直角三角形,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左頂點為.過點作直線交橢圓于另一點,交軸于點,點為坐標原點.

1)求橢圓的方程:

2)已知的中點,是否存在定點,對任意的直線,恒成立?若存在,求出點的坐標;若不存在說明理由;

3)過點作直線的平行線與橢圓相交,為其中一個交點,求的最大值.

查看答案和解析>>

同步練習冊答案