【題目】在我國古代數(shù)學名著《九章算術》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

(1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

(2)如圖,已知垂足為,垂足為.

(i)證明:平面⊥平面;

(ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)

【答案】(1).(2)(i) 見證明;(ii)見解析

【解析】

1)根據(jù)已知填均可;(2)(i)先證明平面,再證明平面⊥平面;(ii) 在平面中,記,,連結,則為所求的.再證明是二面角的平面角.

(1).

(2)(i)在三棱錐中,,,,

所以平面,

平面,所以,

,,所以平面.

平面,所以,

因為,所以平面,

因為平面,所以平面平面.

(ii)

在平面中,記,連結,則為所求的.

因為平面,平面,所以,

因為平面,平面,所以,

,所以平面.

平面平面,所以,.

所以就是二面角的一個平面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若直線被圓截得的弦長為4,則當取最小值時直線的斜率為( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東莞市公交公司為了方便廣大市民出行,科學規(guī)劃公交車輛的投放,計劃在某個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車的間隔時間與乘客等候人數(shù)之間的關系,選取一天中的六個不同的時段進行抽樣調查,經(jīng)過統(tǒng)計得到如下數(shù)據(jù):

間隔時間(分鐘)

8

10

12

14

16

18

等候人數(shù)(人)

16

19

23

26

29

33

調查小組先從這6組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗,檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)的差,若兩組差值的絕對值均不超過1,則稱所求的回歸方程是“理想回歸方程”.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:,

1)若選取的是前4組數(shù)據(jù),求關于的線性回歸方程

2)判斷(1)中的方程是否是“理想回歸方程”:

3)為了使等候的乘客不超過38人,試用(1)中方程估計間隔時間最多可以設置為多少分鐘?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為檢驗車間一生產(chǎn)線工作是否正常,現(xiàn)從生產(chǎn)線中隨機抽取一批零件樣本,測量它們的尺寸(單位:)并繪成頻率分布直方圖,如圖所示.根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件尺寸服從正態(tài)分布,其中近似為零件樣本平均數(shù),近似為零件樣本方差.

(1)求這批零件樣本的的值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)假設生產(chǎn)狀態(tài)正常,求;

(3)若從生產(chǎn)線中任取一零件,測量其尺寸為,根據(jù)原則判斷該生產(chǎn)線是否正常?

附:;若,則, ,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定圓,動圓過點 且與圓相切,記圓心的軌跡為

(1)求曲線的方程;

(2)已知直線 交圓兩點.是曲線上兩點,若四邊形的對角線,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務進行賬務支付的一種服務方式.繼卡類支付、網(wǎng)絡支付后,手機支付儼然成為新寵.某金融機構為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,如表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,得到表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(1)求z關于t的線性回歸方程;

(2)通過(1)中的方程,求出y關于x的回歸方程;

(3)用所求回歸方程預測到2010年年底,該地儲蓄存款額可達多少?

附:對于線性回歸方程,

其中, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設計師的你,對TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

同步練習冊答案