精英家教網 > 高中數學 > 題目詳情

【題目】若直線被圓截得的弦長為4,則當取最小值時直線的斜率為( )

A. 2 B. C. D.

【答案】A

【解析】

由已知中圓的方程x2+y2+2x﹣4y+1=0我們可以求出圓心坐標,及圓的半徑,結合直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+2x﹣4y+1=0所截得的弦長為4,我們易得到a,b的關系式,再根據基本不等式中1的活用,即可得到答案.

圓x2+y2+2x﹣4y+1=0是以(﹣1,2)為圓心,以2為半徑的圓,

直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+2x﹣4y+1=0所截得的弦長為4,

直線過圓心,

∴a+2b=2,

=)(a+2b)=(4++)≥(4+4)=4,當且僅當a=2b時等號成立.

∴k=2

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點O為坐標原點,極軸為x軸非負半軸建立平面直角坐標系.
(Ⅰ)求曲線C1和曲線C2的直角坐標方程;
(Ⅱ)若點P是曲線C1上一動點,過點P作線段OP的垂線交曲線C2于點Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三次函數過點,且函數在點處的切線恰好是直線.

(Ⅰ)求函數的解析式;

(Ⅱ) 設函數,若函數在區(qū)間上有兩個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點O為坐標原點,極軸為x軸非負半軸建立平面直角坐標系.
(Ⅰ)求曲線C1和曲線C2的直角坐標方程;
(Ⅱ)若點P是曲線C1上一動點,過點P作線段OP的垂線交曲線C2于點Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出s的值為11,那么輸入的n值等于(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在空間中,給出下列說法:①平行于同一個平面的兩條直線是平行直線;②垂直于同一條直線的兩個平面是平行平面;③若平面內有不共線的三點到平面的距離相等,則;④過平面的一條斜線,有且只有一個平面與平面垂直.其中正確的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數方程為 (θ為參數).
(1)將C1的方程化為直角坐標方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在我國古代數學名著《九章算術》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

(1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

(2)如圖,已知垂足為,垂足為.

(i)證明:平面⊥平面;

(ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)

查看答案和解析>>

同步練習冊答案