【題目】執(zhí)行如圖所示的程序框圖,若輸出s的值為11,那么輸入的n值等于(

A.5
B.6
C.7
D.8

【答案】B
【解析】解:當i=1,S=1時,不滿足輸出條件,故進行循環(huán),執(zhí)行完循環(huán)體后,S=1,i=2;
當i=2,S=1時,不滿足輸出條件,故進行循環(huán),執(zhí)行完循環(huán)體后,S=2,i=3;
當i=3,S=2時,不滿足輸出條件,故進行循環(huán),執(zhí)行完循環(huán)體后,S=4,i=4;
當i=4,S=4時,不滿足輸出條件,故進行循環(huán),執(zhí)行完循環(huán)體后,S=7,i=5;
當i=5,S=7時,不滿足輸出條件,故進行循環(huán),執(zhí)行完循環(huán)體后,S=11,i=6;
當i=6,S=11時,滿足輸出條件,
故進行循環(huán)的條件應(yīng)為:i<6,
即輸入n的值是6,
故選:B.
【考點精析】關(guān)于本題考查的程序框圖,需要了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機抽取500個,測量這些桔柚的直徑,所得數(shù)據(jù)整理如下:

直徑分組

甲基地頻數(shù)

10

30

120

175

125

35

5

乙基地頻數(shù)

5

35

115

165

110

60

10

(1)根據(jù)以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認為“桔柚直徑與所在基地有關(guān)?”

甲基地

乙基地

合計

優(yōu)質(zhì)品

_________

_________

_________

非優(yōu)質(zhì)品

_________

_________

_________

合計

_________

_________

_________

(2)求優(yōu)質(zhì)品率較高的基地的500個桔柚直徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);

(3)記甲基地直徑在范圍內(nèi)的五個桔柚分別為、、、,現(xiàn)從中任取二個,求含桔柚的概率.

附:.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱的側(cè)面是邊長為的菱形,,且

1)求證:;

2)若,當二面角為直二面角時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線被圓截得的弦長為4,則當取最小值時直線的斜率為( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線點,已知米,米.

(1)要使矩形的面積大于50平方米,則的長應(yīng)在什么范圍?

(2)當的長為多少米時,矩形花壇的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩地生產(chǎn)某種產(chǎn)品,他們可以調(diào)出的數(shù)量分別為300噸、750.A,B,C三地需要該產(chǎn)品數(shù)量分別為200噸,450噸,400噸,甲地運往A,B,C三地的費用分別為6/噸、3/噸,5/噸,乙地運往A,BC三地的費用分別為5/噸,9/噸,6/噸,問怎樣調(diào)運,才能使總運費最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

()時,求函數(shù)的單調(diào)區(qū)間;

()時,對任意恒在函數(shù)上方,若,的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務(wù)進行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機支付儼然成為新寵.某金融機構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

同步練習冊答案