【題目】若函數(shù)在區(qū)間內(nèi)恰有2019個(gè)零點(diǎn),則________

【答案】

【解析】

根據(jù)零點(diǎn)的定義可知,方程,即

內(nèi)有有2019個(gè)根,顯然不滿足方程,所以

,再研究直線與函數(shù)的交點(diǎn)個(gè)數(shù),即可解出.

,即有,因?yàn)?/span>不滿足方程,所以,令,∴.∵函數(shù)上遞增,在上遞增,由圖象可知,直線與函數(shù)的圖象至少有一個(gè)交點(diǎn).

當(dāng)時(shí),直線與函數(shù)的圖象只有一個(gè)交點(diǎn),此時(shí),在一個(gè)周期內(nèi)的上有兩個(gè)解,所以在區(qū)間內(nèi)不可能有奇數(shù)個(gè)解;

當(dāng)時(shí),同理可得,在區(qū)間內(nèi)不可能有奇數(shù)個(gè)解;

當(dāng)時(shí),直線與函數(shù)的圖象有兩個(gè)交點(diǎn),一個(gè),一個(gè),所以在一個(gè)周期內(nèi),有兩個(gè)解,有兩個(gè)解,所以在區(qū)間內(nèi)不可能有奇數(shù)個(gè)解;

當(dāng)時(shí),直線與函數(shù)的圖象有兩個(gè)交點(diǎn),一個(gè),一個(gè),所以在一個(gè)周期內(nèi),有兩個(gè)解,有一個(gè)解,即一個(gè)周期內(nèi)有三個(gè)解,所以,即

當(dāng)時(shí),同理可得,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人在塔的正東方向沿著南偏西60°的方向前進(jìn)40 m以后,望見(jiàn)塔在東北方向上,若沿途測(cè)得塔的最大仰角為30°,則塔高為________________m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)站舉行衛(wèi)生防疫的知識(shí)競(jìng)賽網(wǎng)上答題,共有120000人通過(guò)該網(wǎng)站參加了這次競(jìng)賽,為了解競(jìng)賽成績(jī)情況,從中抽取了100人的成績(jī)進(jìn)行統(tǒng)計(jì),其中成績(jī)分組區(qū)間為,,,,,其頻率分布直方圖如圖所示,請(qǐng)你解答下列問(wèn)題:

1)求的值;

2)成績(jī)不低于90分的人就能獲得積分獎(jiǎng)勵(lì),求所有參賽者中獲得獎(jiǎng)勵(lì)的人數(shù);

3)根據(jù)頻率分布直方圖,估計(jì)這次知識(shí)競(jìng)賽成績(jī)的平均分(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱臺(tái)ABCDA1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,ABAA1=2A1B1=2.

(1)若MCD中點(diǎn),求證:AM⊥平面AA1B1B;

(2)求直線DD1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在直角梯形ABCD中,∠ADC=90°,CDAB,ADCDAB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC,如圖②所示.

(1)證明:平面ABD⊥平面BCD;

(2)求二面角DABC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列共有k項(xiàng),且同時(shí)滿足,則稱(chēng)數(shù)列數(shù)列.

1)若等比數(shù)列數(shù)列,求的值;

2)已知為給定的正整數(shù),且,

①若公差為的等差數(shù)列數(shù)列,求公差d;

②若數(shù)列的通項(xiàng)公式為,其中常數(shù),判斷數(shù)列是否為數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市(如圖)的東偏南方向300千米的海面處,并以20千米/時(shí)的速度向西偏北45°方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60千米,并以10千米/時(shí)的速度不斷增大,問(wèn)幾個(gè)小時(shí)后該城市開(kāi)始受到臺(tái)風(fēng)的侵襲?受到臺(tái)風(fēng)的侵襲的時(shí)間有多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線過(guò)點(diǎn),且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(1)求圓的直角坐標(biāo)方程及直線的參數(shù)方程;

(2)設(shè)直線與圓的兩個(gè)交點(diǎn)分別為, ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)試探究當(dāng)時(shí),方程的解的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案