【題目】已知命題,;命題關(guān)于的方程有兩個相異實(shí)數(shù)根.
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題首先結(jié)合對數(shù)函數(shù)二次函數(shù)性質(zhì)求解命題p,q為真命題時的m的取值范圍,(1)中由為真命題可知p假q真,由此解不等式可求得實(shí)數(shù)的取值范圍;(2)中為真命題,為假命題可知兩命題一真一假,分兩種情況可分別求得m的取值范圍
試題解析:令,則在[0,2]上是增函數(shù),
故當(dāng)時,最小值為,故若為真,則. ……2分
即時,方程有兩相異實(shí)數(shù)根,
∴; ……4分
(1)若為真,則實(shí)數(shù)滿足故,
即實(shí)數(shù)的取值范圍為……8分
(2)若為真命題,為假命題,則一真一假,
若真假,則實(shí)數(shù)滿足即;
若假真,則實(shí)數(shù)滿足即.
綜上所述,實(shí)數(shù)的取值范圍為. ……12[來源:學(xué)&
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的單調(diào)減區(qū)間;
(2)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班級新年晚會設(shè)置抽獎環(huán)節(jié).不透明紙箱中有大小相同的紅球3個,黃球2個,且這5個球外別標(biāo)有數(shù)字1、2、3、4、5.有如下兩種方案可供選擇:
方案一:一次性抽取兩球,若顏色相同,則獲得獎品;
方案二:依次有放回地抽取兩球,若數(shù)字之和大于5,則獲得獎品.
(1)寫出按方案一抽獎的試驗(yàn)的所有基本事件;
(2)哪種方案獲得獎品的可能性更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),且其左右焦點(diǎn)的坐標(biāo)分別是,.
(1)求橢圓的離心率及標(biāo)準(zhǔn)方程;
(2)設(shè)為動點(diǎn),其中,直線經(jīng)過點(diǎn)且與橢圓相交于,兩點(diǎn),若為的中點(diǎn),是否存在定點(diǎn),使恒成立?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某濕地兩點(diǎn)間的距離,觀察者找到在同一直線上的三點(diǎn).從點(diǎn)測得,從點(diǎn)測得,,從點(diǎn)測得.若測得,(單位:百米),則兩點(diǎn)的距離為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,ABCD為梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。
(I)點(diǎn)E在線段PB上,滿足CE//平面PAD,求的值。
(II)已知AC與BD的交點(diǎn)為M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過點(diǎn)A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點(diǎn)P,滿足PA=PO?若存在,指出有幾個這樣的點(diǎn);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設(shè)池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價最低?最低造價是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com