【題目】在△ABC中,BC邊上的中線AD長為3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的長.

【答案】(Ⅰ);(Ⅱ)AC=4.

【解析】試題分析:(1)在△ABD中,由正弦定理代入條件即可;

(2)在△ACD中,由余弦定理得:AC2=AD2+DC2-2ADDCcos∠ADC,只需依次確定邊長和余弦值即可.

試題解析:

(1)在△ABD中,BD=2,sinB=,AD=3,

∴由正弦定理=,得sin∠BAD═==;

(2)∵sinB=,∴cosB=,

sin∠BAD=,∴cos∠BAD=,

cos∠ADC=cos(∠B+∠BAD)=×-×=-,

∵D為BC中點,∴DC=BD=2,

∴在△ACD中,由余弦定理得:AC2=AD2+DC2-2ADDCcos∠ADC=9+4+3=16,

∴AC=4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時的圖象且最高點B-1,4,在y軸右側(cè)的曲線段是以CO為直徑的半圓弧

(1)試確定A,的值;

(2)現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO單位,在點C與半圓弧上的一點D之間設計為直線段造價為2萬元/米,從D到點O之間設計為沿半圓弧的弧形造價為1萬元/米弧度試用來表示修建步行道的造價預算,并求造價預算的最大值?只考慮步行道的,不考慮步行道的寬度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某班的一次期末考試中,隨機的抽取了七位同學的數(shù)學(滿分150分)、物理(滿分110分)成績?nèi)缦卤硭荆瑪?shù)學、物理成績分別用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

關(guān)于t的回歸方程;

(2)利用(1)中的回歸方程,分析數(shù)學成績的變化對物理成績的影響,并估計該班某學生數(shù)學成績130分時,他的物理成績(精確到個位).

附:回歸方程 中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).

(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;

(II)設函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點,求m的值;

(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費標準是每車每次不超過兩小時免費,超過兩小時的部分每小時2元(不足1小時的部分按1小時計算).甲乙兩人相互獨立租車(各租一車一次).設甲、乙不超過兩小時還車的概率分別為 ;兩小時以上且不超過三小時還車的概率分別為, ;兩人租車時間都不會超過四小時.

(1)求出甲、乙所付租車費用相同的概率;

(2)設甲、乙兩人所付的租車費用之和為隨機變量,求隨機變量的概率分布和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量, ,設函數(shù).

(1)求函數(shù)的最小正周期;

(2)已知分別為三角形的內(nèi)角對應的三邊長, 為銳角, , ,且恰是函數(shù)上的最大值,求和三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設P、Q為兩個非空集合,定義集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},則P+Q中元素的個數(shù)為

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫出下列函數(shù)的圖像,并根據(jù)圖像說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù)。

(1)y=x2-5x-6; (2)y=|4-x2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,BA=BC,以AB為直徑的⊙O分別交ACBC于點D、E,BC的延長線于⊙O的切線AF交于點F

(1)求證:∠ABC=2∠CAF;

(2)若CEEB=1∶4,求CE的長

查看答案和解析>>

同步練習冊答案