【題目】已知函數(shù)(為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),;
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有.
【答案】(1);極小值為,無(wú)極大值(2)證明見(jiàn)解析(3)證明見(jiàn)解析
【解析】
(1)由導(dǎo)數(shù)的幾何意義得,可構(gòu)造方程求得;根據(jù)導(dǎo)函數(shù)的正負(fù)可確定的單調(diào)性,由此確定函數(shù)有極小值,無(wú)極大值;
(2)令,由(1)可得,可知單調(diào)遞增;結(jié)合,則當(dāng)時(shí),,由此證得結(jié)論;
(3)取,由(2)可知當(dāng)時(shí),,由此可得結(jié)論.
(1),,,解得:
,.
當(dāng)時(shí),;當(dāng)時(shí),,
在上單調(diào)遞減,在上單調(diào)遞增.
在處取得極小值,
極小值為,無(wú)極大值.
(2)令,則.
由(1)得:,即,在上單調(diào)遞增.
又,當(dāng)時(shí),,即.
(3)對(duì)任意給定的正數(shù)c,取.
由(2)知:當(dāng)時(shí),.
當(dāng)時(shí),,即.
對(duì)任意給定的正數(shù)c,總存在,當(dāng)時(shí),恒有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式|x﹣1|+|2x+1|<3的解集為{x|a<x<b};
(1)求a,b的值;
(2)若正實(shí)數(shù)x,y滿(mǎn)足x+y=ab+2且不等式(yc2﹣4)x+(8cx﹣1)y≤0對(duì)任意的x,y恒成立,求實(shí)數(shù)c的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣4x2+5x﹣4.
(1)求曲線f(x)在點(diǎn)(2,f(2))處的切線方程:
(2)若g(x)=f(x)+k,求g(x)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),直線是曲線的切線;
(2)若不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(,為常數(shù),且)滿(mǎn)足條件:,且方程有兩相等實(shí)根.
(1)求的解析式;
(2)設(shè)命題 “函數(shù)在上有零點(diǎn)”,命題 “函數(shù)在上單調(diào)遞增”;若命題“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,為的中點(diǎn).
(1)證明:;
(2)若點(diǎn)在線段上,且直線與平面所成角的正弦值為,求直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O1與圓O:x2+y2=r(r>0)交于點(diǎn)P(﹣1,y0).且關(guān)于直線x+y=1對(duì)稱(chēng).
(1)求圓O及圓O1的方程:
(2)在第一象限內(nèi).圓O上是否存在點(diǎn)A,過(guò)點(diǎn)A作直線l與拋物線y2=4x交于點(diǎn)B,與x軸交于點(diǎn)D,且以點(diǎn)D為圓心的圓過(guò)點(diǎn)O,A,B?若存在.求出點(diǎn)A的坐標(biāo);若不存在.說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=xlnx-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( )
A.[0,)B.(0,)
C.(0,]D.(-,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x2+2x﹣3)ex;
(1)求f(x)在x=0處的切線;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com