【題目】動點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是,記點(diǎn)的軌跡為.

(1)求曲線的方程;

(2)對于定點(diǎn),作過點(diǎn)的直線與曲線交于不同的兩點(diǎn),,求的內(nèi)切圓半徑的最大值.

【答案】見解析

【解析】(1)由題意,得,整理得,

所以曲線的方程為. ………………(4分)

(2)設(shè),,又設(shè)的內(nèi)切圓的半徑為.

易知、為橢圓的左、右焦點(diǎn),

所以的周長為,,

因此面積最大,就最大.

. ………………(6分)

由題意知,直線的斜率不為零,可設(shè)直線的方程為,

,得,

所以, ………………(8分)

又因直線與橢圓交于不同的兩點(diǎn),

所以,即),則

,則, ………………(10分)

,則.

所以函數(shù)上是單調(diào)遞增函數(shù),

即當(dāng)時,上單調(diào)遞增,

因此有,所以,

即當(dāng),時,最大,此時

故當(dāng)直線的方程為時,內(nèi)切圓半徑的最大值為 ………………(12分)

【命題意圖】本小題主要考查軌跡方程的求法、直線與橢圓的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合、轉(zhuǎn)化與化歸、分類與整合等數(shù)學(xué)思想,并考查思維的嚴(yán)謹(jǐn)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作拋物線的兩條切線, 切點(diǎn)分別為, .

(1) 證明: 為定值;

(2) 記△的外接圓的圓心為點(diǎn), 點(diǎn)是拋物線的焦點(diǎn),任意實(shí)數(shù), 試判斷以為直徑的圓是否恒過點(diǎn)? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016雙節(jié)期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速分成六段: , , , , 后得到如圖的頻率分布直方圖.

I)某調(diào)查公司在采樣中,用到的是什么抽樣方法?

II)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計值;

(III)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解本市居民的生活成本,甲、乙、丙三名同學(xué)利用假期分別對三個社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為s1、s2、s3,則它們的大小關(guān)系為__________.(用“>”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, ,數(shù)列滿足.

(1)求證:數(shù)列是等差數(shù)列,寫出的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式及數(shù)列中的最大項(xiàng)與最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,設(shè)PD=x,∠BPC=θ,記函數(shù)f(x)=tanθ,則下列表述正確的是(

A.f(x)是關(guān)于x的增函數(shù)
B.f(x)是關(guān)于x的減函數(shù)
C.f(x)關(guān)于x先遞增后遞減
D.關(guān)于x先遞減后遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中上的單調(diào)性正好相反,回答下列問題:

(1)對于,不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)令,兩正實(shí)數(shù)、滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上是奇函數(shù).

1)求

2)對,不等式恒成立,求實(shí)數(shù)的取值范圍;

3)令,若關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求同時滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案