精英家教網 > 高中數學 > 題目詳情

【題目】求同時滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程.

【答案】(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9.

【解析】試題分析:根據題意,設圓心為C(a,3a),圓C被直線l截得的弦為AB,D為AB的中點,連結CD、BC.由垂徑定理和點到直線的距離公式,建立關于a的方程并解出a值,即可得到滿足條件的圓的標準方程.

試題解析:

設所求的圓的方程是(xa2+(yb2r2,

則圓心到直線的距離為,

∴2r2=(a-b)2+14 ①

由于所求的圓與x軸相切,所以r2=b2

又因為所求圓心在直線3x-y=0上,則3a-b=0 ③

聯(lián)立①②③,解得a=1,b=3,r2=9a=-1,b=-3,r2=9.

故所求的圓的方程是(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】動點與定點的距離和它到定直線的距離的比是,記點的軌跡為.

(1)求曲線的方程;

(2)對于定點,作過點的直線與曲線交于不同的兩點,,求的內切圓半徑的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】由于渤海海域水污染嚴重,為了獲得第一手的水文資料,潛水員需要潛入水深為60米的水底進行作業(yè),根據經驗,潛水員下潛的平均速度為(米/單位時間),每單位時間消耗氧氣(升),在水底作業(yè)10個單位時間,每單位時間消耗氧氣(升),返回水面的平均速度為(米/單位時間),每單位時間消耗氧氣(升),記該潛水員完成此次任務的消耗氧氣總量為(升).

(1)求關于的函數關系式;

(2)若,求當下潛速度取什么值時,消耗氧氣的總量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為

(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖:在直角梯形, , , , ,把沿折到的位置,使.

(Ⅰ)求證: 平面;

(Ⅱ)求平面與平面的所夾的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在點處的切線與直線垂直.

(1)若函數在區(qū)間上存在極值,求實數的取值范圍;

(2)求證:當時, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交通指數是交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念,記交通指數為,其范圍為,分為五個級別, 暢通; 基本暢通; 輕度擁堵; 中度擁堵; 嚴重擁堵.早高峰時段(),從某市交通指揮中心隨機選取了三環(huán)以內的50個交通路段,依據其交通指數數據繪制的頻率分布直方圖如圖.

(1)這50個路段為中度擁堵的有多少個?

(2)據此估計,早高峰三環(huán)以內的三個路段至少有一個是嚴重擁堵的概率是多少?

(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘,中度擁堵為42分鐘,嚴重擁堵為60分鐘,求此人所用時間的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓過定點且與圓相切,記動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過點且斜率不為零的直線交曲線, 兩點,在軸上是否存在定點,使得直線的斜率之積為非零常數?若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)求證:f(x)+f(1﹣x)= ;
(2)設數列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1),求an
(3)設數列{an}的前項n和為Sn , 若Sn≥λan(n∈N*)恒成立,求實數λ的取值范圍.

查看答案和解析>>

同步練習冊答案