【題目】如圖,在多面體中,已知是邊長為2的正方形, 為正三角形, 分別為的中點, .

(1)求證: 平面;

(2)求證: 平面;

3)求與平面所成角的正弦值.

【答案】(1)見解析;(2)見解析;(3)

【解析】試題分析

1)取取的中點,連接,根據(jù)條件可證得四邊形為平行四邊形,故,由線面平行的判定定理可得結(jié)論.(2)由條件可得平面,故得;又正三角形,可得平面.(由(1)、(2)可知平面,故與平面所成的角,解三角形可得,即與平面所成角的正弦值為

試題解析:

(1)證明:如圖1,取的中點,連接,

因為分別為的中點,

所以,

所以,

因為的中點, ,

所以

所以四邊形為平行四邊形,

所以

又因為平面, 平面

所以平面.

(2)證明:因為, ,

所以

在正方形中,

,

所以平面

平面

所以,

在正三角形,

,

所以平面

(3)如圖2,連接,

由(1)、(2)可知平面

所以與平面所成的角.

中, ,

所以,

所以,

與平面所成角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求ab的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當時,恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù).

(Ⅰ) 的值;

(Ⅱ) 若存在,使不等式有解,求實數(shù)的取值范圍;

(Ⅲ)已知函數(shù)滿足,且規(guī)定,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中, , , , 二面角的大小為.

(1)求證: 平面;

(2)求平面與平面所成的角(銳角)的大小;

(3)若的中點,求直線與平面所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論:函數(shù)是同一函數(shù);函數(shù)的定義域為,則函數(shù)的定義域為;函數(shù)的遞增區(qū)間為;其中正確的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)

⑴若的定義域為,求實數(shù)的取值范圍;

⑵當,求函數(shù)的最小值;

⑶是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點 .

(1)求橢圓的方程;

(2)過點軸的垂線,交橢圓,求證: , 三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓 為橢圓的右焦點, 分別為橢圓的左,右兩個頂點.若過點且斜率不為0的直線與橢圓交于兩點,且線段的斜率之積為.

1求橢圓的方程;

2已知直線相交于點,證明: 三點共線.

查看答案和解析>>

同步練習冊答案