2.已知集合A={1,2,3},B={x|x2<9},則A∩B=( 。
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}

分析 先求出集合A和B,由此利用交集的定義能求出A∩B的值.

解答 解:∵集合A={1,2,3},B={x|x2<9}={x|-3<x<3},
∴A∩B={1,2}.
故選:D.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.計算不定積分∫(4x3-3x2+2x-1)dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條相互垂直的半徑.若該幾何體的體積是$\frac{28π}{3}$,則它的表面積是( 。
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知z=(m+3)+(m-1)i在復平面內(nèi)對應的點在第四象限,則實數(shù)m的取值范圍是( 。
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=[an],求數(shù)列{bn}的前10項和,其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.從甲、乙等5名學生中隨機選出2人,則甲被選中的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{8}{25}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設偶函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,△KLM為等腰直角三角形,∠KML=90°,KL=1,則f($\frac{1}{12}$)的值為( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{8}$B.$\frac{\sqrt{2}+\sqrt{6}}{8}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E與二面角C-BE-F都是60°.
(Ⅰ)證明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

同步練習冊答案