【題目】已知是拋物線的焦點(diǎn),點(diǎn)在軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.
【答案】(1);(2).
【解析】
(1)求得點(diǎn)的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實(shí)數(shù)的值,進(jìn)而可得出拋物線的方程;
(2)設(shè)點(diǎn),,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合求得的值,可得出直線所過定點(diǎn)的坐標(biāo),由此可得出點(diǎn)到直線的最大距離.
(1)易知點(diǎn),又,所以點(diǎn),則直線的方程為.
聯(lián)立,解得或,所以.
故拋物線的方程為;
(2)設(shè)的方程為,聯(lián)立有,
設(shè)點(diǎn),,則,所以.
所以,解得.
所以直線的方程為,恒過點(diǎn).
又點(diǎn),故當(dāng)直線與軸垂直時(shí),點(diǎn)到直線的最大距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求的最大值;
(2)若對(duì)于任意的,不等式恒成立,求整數(shù)a的最小值.(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車品牌為了解客戶對(duì)其旗下的五種型號(hào)汽車的滿意情況,隨機(jī)抽取了一些客戶進(jìn)行回訪,調(diào)查結(jié)果如下表:
汽車型號(hào) | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
回訪客戶(人數(shù)) | 250 | 100 | 200 | 700 | 350 |
滿意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
滿意率是指某種型號(hào)汽車的回訪客戶中,滿意人數(shù)與總?cè)藬?shù)的比值.假設(shè)客戶是否滿意互相獨(dú)立,且每種型號(hào)汽車客戶對(duì)于此型號(hào)汽車滿意的概率與表格中該型號(hào)汽車的滿意率相等.
(1)從所有的回訪客戶中隨機(jī)抽取1人,求這個(gè)客戶滿意的概率;
(2)從Ⅰ型號(hào)和Ⅴ型號(hào)汽車的所有客戶中各隨機(jī)抽取1人,設(shè)其中滿意的人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,分別是的中點(diǎn),將沿折起,如圖所示,記二面角的大小為
(1)證明:
(2)若為正三角形,試判斷點(diǎn)在平面內(nèi)的身影是否在直線上,證明你的結(jié)論,并求角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年冬,北京霧霾天數(shù)明顯減少,據(jù)環(huán)保局統(tǒng)計(jì)三個(gè)月的空氣質(zhì)量,達(dá)到優(yōu)良的天數(shù)超過天,重度污染的天數(shù)僅有天,主要原因是政府對(duì)治理霧霾采取有效措施.如:(1)減少機(jī)動(dòng)車尾氣排放(2)實(shí)施煤改電或煤改氣工程(3)關(guān)停了大量的排污企業(yè)(4)部分企業(yè)季節(jié)性停產(chǎn).為了解農(nóng)村地區(qū)實(shí)施煤改氣工程后天然氣的使用從某鄉(xiāng)鎮(zhèn)隨機(jī)抽取戶,進(jìn)行月均用氣量調(diào)查,得到的用氣量數(shù)據(jù)均在區(qū)間內(nèi),表如下
分組 | 頻數(shù) | 頻率 |
14 | 0.14 | |
55 | 0.55 | |
4 | 0.04 | |
2 | 0.02 | |
合計(jì) | 100 | 1 |
(1)求和值,若同組內(nèi)的每個(gè)數(shù)據(jù)用該組區(qū)間中點(diǎn)值代替,估計(jì)該鄉(xiāng)鎮(zhèn)每戶平均用氣量;
(2)從樣本調(diào)查的用氣量和的用戶組中任選2戶,進(jìn)行燃?xì)馐褂脻M意度調(diào)查,求2戶用氣量處于不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過點(diǎn)且斜率為的直線與軸交于點(diǎn),與橢圓交于另一個(gè)點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)過點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是等腰梯形,,,是等邊三角形,點(diǎn)在上,且.
(1)證明://平面.
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若時(shí),求證:對(duì)于任意的,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com