3.湖南省安全會(huì)議提到,原則上不再建設(shè)新的花炮廠,對(duì)已建成的花炮廠進(jìn)行質(zhì)量評(píng)估,質(zhì)量評(píng)估單位等級(jí)分為優(yōu)秀、合格和不合格三類.省質(zhì)量技術(shù)監(jiān)督局對(duì)瀏陽(yáng)所有花炮廠進(jìn)行了質(zhì)量評(píng)估,在所有進(jìn)行評(píng)估的花炮廠中,質(zhì)量?jī)?yōu)秀,合格與不合格的廠家數(shù)量如表.
優(yōu)秀合格不合格
年產(chǎn)值2億以上804520
年產(chǎn)值小于或等于2億101530
(1)在所有參與調(diào)查的廠家中,用分層抽樣的方法抽取n個(gè)廠家,已知評(píng)估“不合格”的廠家中抽取25家,求求n的值.
(2)在評(píng)估不合格的廠家中,用分層抽樣的方法抽取5家組成一個(gè)總體,從這5家中任意選取2家,至少有1家年產(chǎn)量在2億以上的概率;
(3)在接受調(diào)查的廠家中,有8家給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8個(gè)廠家打出的分?jǐn)?shù)看作一個(gè)總體,從中任取1個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的概率.

分析 (1)根據(jù)在抽樣過(guò)程中每個(gè)個(gè)體被抽到的概率相等,寫出比例式,使得比例相等,得到關(guān)于n的方程,解方程即可.
(2)由題意知本題是一個(gè)等可能事件的概率,本題解題的關(guān)鍵是列舉出所有事件的事件數(shù),再列舉出滿足條件的事件數(shù),得到概率.
(3)先求出總體的平均數(shù),然后找到與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的數(shù),最后根據(jù)古典概型的公式進(jìn)行求解即可.

解答 解:(1)由題意得$\frac{n}{80+10+45+25+30+20}$=$\frac{25}{30+20}$,解得n=100,
(2)年產(chǎn)值2億以有5×$\frac{20}{20+30}$=2家,記為S1,S2;年產(chǎn)值小于或等于2億的有5×$\frac{30}{20+30}$=3家,記為B1,B2,B3
則從中任取2件的所有基本事件為:
(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),
(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共10個(gè),
其中至少有1家年產(chǎn)量在2億以上的基本事件有7個(gè):
(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),
所以從這5家中任意選取2家,至少有1家年產(chǎn)量在2億以上的概率為$\frac{7}{10}$.
(3)樣本的平均數(shù)為$\frac{1}{8}$(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.
那么與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的數(shù)只有8.2,
所以該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的概率為$\frac{1}{8}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是古典概型概率計(jì)算公式,其中熟練掌握利用古典概型概率計(jì)算公式求概率的步驟,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.F為拋物線C:y2=4x的焦點(diǎn),過(guò)點(diǎn)F的直線l與C交于A,B兩點(diǎn),C的準(zhǔn)線與x軸的交點(diǎn)為E,動(dòng)點(diǎn)P滿足$\overrightarrow{EP}$=$\overrightarrow{EB}$+$\overrightarrow{EA}$.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)當(dāng)四邊形EAPB的面積最小時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.復(fù)數(shù)z滿足$\frac{1+z}{1-z}$=i(i為虛數(shù)單位),則|z|等于( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且Sn=2an-1.
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(1-x,x),$\overrightarrow$=(1,-y)(x>0,y>0)且$\overrightarrow{a}$∥$\overrightarrow$,則x+y的最小值是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知復(fù)數(shù)z滿足$\frac{z-i}{z}$=i,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓E的離心率為$\frac{1}{2}$,且過(guò)點(diǎn)M(2,3).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P是橢圓E上一點(diǎn),過(guò)P作兩條斜率之積$\frac{1}{2}$的直線l1,l2.以橢圓E的右焦點(diǎn)C為圓心$\sqrt{2}$為半徑作圓,當(dāng)直線l1,l2都與圓C相切時(shí),求P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期為π,給出下列四個(gè)命題:
(1)f(x)的最大值為3;
(2)將f(x)的圖象向左平移$\frac{π}{3}$后所得的函數(shù)是偶函數(shù);
(3)f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增;
(4)f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱.
其中正確說(shuō)法的序號(hào)是( 。
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某高校進(jìn)行自主招生測(cè)試,報(bào)考學(xué)生有500人,其中男生300人,女生200人,為了研究學(xué)生的成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們測(cè)試的分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成4組:[70,90),[90,110),[110,130),[130,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖可以估計(jì)女生測(cè)試成績(jī)的平均值為103.5,請(qǐng)你估計(jì)男生測(cè)試成績(jī)的平均值,由此推斷男、女生測(cè)試成績(jī)的平均水平的高低;
(Ⅱ)若規(guī)定分?jǐn)?shù)不小于110分的學(xué)生為“優(yōu)秀生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“優(yōu)秀生與性別有關(guān)”?
優(yōu)秀生非優(yōu)秀生合計(jì)
男生
女生
合計(jì)
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

同步練習(xí)冊(cè)答案