【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求四棱錐的體積.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:
(1)證得AD⊥BD,而面PAD⊥面ABCD,∴BD⊥面PAD,∴面MBD⊥面PAD.
(2)作輔助線PO⊥AD,則PO為四棱錐P—ABCD的高,求得S四邊形ABCD=24.∴VP—ABCD=16.
試題解析:
(1)證明:在△ABD中,∵AD=4,BD=8,AB=4,∴AD2+BD2=AB2.∴AD⊥BD.
又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD面ABCD,∴BD⊥面PAD.
又BD面BDM,∴面MBD⊥面PAD.
(2)解:過(guò)P作PO⊥AD,
∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO為四棱錐P—ABCD的高.
又△PAD是邊長(zhǎng)為4的等邊三角形,∴PO=2.
在底面四邊形ABCD中,AB∥DC,AB=2DC,∴四邊形ABCD為梯形.
在Rt△ADB中,斜邊AB邊上的高為=,此即為梯形的高.
∴S四邊形ABCD=×=24.
∴VP—ABCD=×24×2=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD中,AB=10cm,BC=8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC 等分,把圖(3)中的每個(gè)小矩形按圖(1)分割并把4個(gè)小扇形焊接成一個(gè)大扇形;按圖(4)的方法將寬BC 等分,把圖(4)中的每個(gè)小矩形按圖(1)分割并把6個(gè)小扇形焊接成一個(gè)大扇形;……;依次將寬BC 等分,每個(gè)小矩形按圖(1)分割并把個(gè)小扇形焊接成一個(gè)大扇形.當(dāng)n時(shí),最后拼成的大扇形的圓心角的大小為 ( )
A. 小于 B. 等于 C. 大于 D. 大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過(guò)點(diǎn)
且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一長(zhǎng)為24米的籬笆,一面利用墻(墻最大長(zhǎng)度是10米)圍成一個(gè)矩形花圃,設(shè)該花圃寬AB為x米,面積是y平方米,
(1)求出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(2)當(dāng)花圃一邊AB為多少米時(shí),花圃面積最大?并求出這個(gè)最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sinx的圖象向右平移三個(gè)單位長(zhǎng)度得到圖象C,再將圖象C上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變)得到圖象C1 , 則C1的函數(shù)解析式為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若 , 試求f(x)在區(qū)間[﹣2,6]上的最值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)且傾斜角為的直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,點(diǎn)M為AB1的中點(diǎn),點(diǎn)P為對(duì)角線AC1上的動(dòng)點(diǎn),點(diǎn)Q為底面ABCD上的動(dòng)點(diǎn)(點(diǎn)P、Q可以重合),則MP+PQ的最小值為( 。
A.
B.
C.
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com