【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點且傾斜角為的直線與曲線相交于兩點.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

【答案】(1)(2)2

【解析】試題分析:(1)兩邊同時乘以,利用公式 得到曲線的直角坐標(biāo)方程;根據(jù)定點和傾斜角代入直線的參數(shù)方程;(2)直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得到關(guān)于的二次方程,而 ,結(jié)合圖象去絕對值,根據(jù)根與系數(shù)的關(guān)系,求的值.

試題解析:解:(1)曲線的極坐標(biāo)方程,

可化為,

;

直線的參數(shù)方程為為參數(shù)),

消去參數(shù),化為普通方程是.

(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,

.

設(shè)兩點對應(yīng)的參數(shù)分別為,則.

,

,

,

,

解得: (不合題意,應(yīng)舍去);

的值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)若對任意的實數(shù),函數(shù)為實常數(shù))的圖象與函數(shù)的圖象總相切于一個定點.

① 求的值;

② 對上的任意實數(shù),都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(1)設(shè)上的一點,證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】猜商品的價格游戲, 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:低了! 則此商品價格所在的區(qū)間是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機賣場對市民進行國產(chǎn)手機認(rèn)可度的調(diào)查,隨機抽取100名市民,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:

(Ⅰ)求頻率分布表中,的值,并補全頻率分布直方圖;

(Ⅱ)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加國產(chǎn)手機用戶體驗問卷調(diào)查,現(xiàn)從這20人中隨機選取2人各贈送精美禮品一份,設(shè)這2名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域為,對給定的正數(shù),若存在閉區(qū)間,使得函數(shù)滿足:①內(nèi)是單調(diào)函數(shù);②上的值域為,則稱區(qū)間級“理想?yún)^(qū)間”.下列結(jié)論錯誤的是( )

A. 函數(shù))存在1級“理想?yún)^(qū)間”

B. 函數(shù))不存在2級“理想?yún)^(qū)間”

C. 函數(shù))存在3級“理想?yún)^(qū)間”

D. 函數(shù), 不存在4級“理想?yún)^(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,且兩坐標(biāo)系有相同的長度單位.已知點的極坐標(biāo)為, 是曲線 上任意一點,點滿足,設(shè)點的軌跡為曲線.

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)若過點的直線的參數(shù)方程為參數(shù)),且直線與曲線交于, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程為),圓的參數(shù)方程為: (其中為參數(shù)).

(1)判斷直線與圓的位置關(guān)系;

(2)若橢圓的參數(shù)方程為為參數(shù)),過圓的圓心且與直線垂直的直線與橢圓相交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬造一座平面為長方形,面積為三級污水處理池.由于地形限制,長、寬都不能超過,處理池的高度一定.如果池的四周墻壁的造價為,中間兩道隔墻的造價為,池底的造價為,則水池的長、寬分別為多少米時,污水池的造價最低?最低造價為多少元?

查看答案和解析>>

同步練習(xí)冊答案