設(shè)數(shù)學(xué)公式,則S2012=________.

-1006
分析:分組求和,利用等差數(shù)列的求和公式,即可得到結(jié)論.
解答:S2012=(1+3+…+2011)+(2+4+…+2012)==-1006
故答案為:-1006.
點(diǎn)評:本題考查數(shù)列的求和,考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xm+n=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小正值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列;當(dāng)yn=sin(
2
)
時,{yn}是周期為4的周期數(shù)列.設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1=1,a2=20.
(1)若數(shù)列{an}是周期為3的周期數(shù)列,則常數(shù)λ的值是
-1
-1

(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若λ=1,則S2012=
21
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=-2012,
S2013
2013
-
S2011
2011
=2
,則S2012=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a7-1)3+2012(a7-1)=1(a2006-1)3+2012(a2006-1)=-1,則S2012=
2012
2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽市普寧二中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè),則S2012=   

查看答案和解析>>

同步練習(xí)冊答案