分析 化簡(jiǎn)直線的參數(shù)方程為普通方程,設(shè)橢圓的P的參數(shù),利用點(diǎn)到直線的距離公式,通過(guò)三角函數(shù)的最值求解即可.
解答 解:由條件:$\frac{{y-\sqrt{3}}}{x-3}=-\frac{1}{{\sqrt{3}}}⇒{C_2}:x+\sqrt{3}y-6=0$.
設(shè)點(diǎn)$P(2\sqrt{3}cosθ,2sinθ)$,點(diǎn)P到C2之距離
$d=\frac{{|{2\sqrt{3}cosθ-2\sqrt{3}sinθ-6}|}}{2}=|{\sqrt{6}sin(θ+\frac{π}{4})-3}|$.${\left.d\right|_{max}}=\sqrt{6}+3$.此時(shí)cosθ=-$\frac{\sqrt{2}}{2}$,
此時(shí)點(diǎn)$P(-\sqrt{6},-\sqrt{2})$.
點(diǎn)評(píng) 本題考查直線的參數(shù)方程橢圓的參數(shù)方程的應(yīng)用,點(diǎn)到直線的距離公式以及三角函數(shù)的最值,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
廣告費(fèi)用x | 2 | 3 | 5 | 6 |
銷售額y | 7 | m | 9 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f($\frac{π}{4}$)=-1 | B. | f(x)的周期為$\frac{π}{2}$ | C. | ω的最大值為4 | D. | f($\frac{3π}{4}$)=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$),k∈Z | B. | (kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$),k∈Z | ||
C. | (kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈Z | D. | (kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com