9.若f(tanx)=sinxcosx,則f(2)的值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{2}{3}$

分析 由條件轉(zhuǎn)化為三角函數(shù)化簡求值,利用同角三角函數(shù)的基本關(guān)系,求得sinxcosx的值.

解答 解:f(tanx)=sinxcosx,則f(2)的值,就是tanx=2,求解sinxcosx的值,
∵tanx=2,∴sinxcosx=$\frac{sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{tanx}{ta{n}^{2}x+1}$=$\frac{2}{4+1}$=$\frac{2}{5}$,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,同角三角函數(shù)的基本關(guān)系,三角函數(shù)化簡求值,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,四邊形ABCD是菱形,且∠A=60°,AB=2,E為AB的中點(diǎn),將四邊形EBCD沿DE折起至EDC1B1,如圖2.

(Ⅰ) 求證:平面ADE⊥平面AEB1
(Ⅱ) 若二面角A-DE-C1的大小為$\frac{π}{3}$,求三棱錐C1-AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=loga(4-ax)在[0,2]上是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},則(∁UA)∪B為(  )
A.{0,2,3,4}B.{4}C.{1,2,4}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=x2+x在區(qū)間[x0,x0+△x]上的平均變化率,并求當(dāng)x0=1,△x=0.1時(shí)的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是一個(gè)平面內(nèi)的三個(gè)向量,其中$\overrightarrow{a}$=(1,2)
(1)|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{c}∥\overrightarrow{a}$,求$\overrightarrow{a}•\overrightarrow{c}$
(2)若|$\overrightarrow$|=$\frac{3\sqrt{5}}{2}$,且$\overrightarrow{a}+2\overrightarrow$與3$\overrightarrow{a}$-$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若關(guān)于x的不等式f(x)≤$\frac{1}{2}$x-1在[1,+∞)上恒成立,求a的取值范圍;
(2)設(shè)函數(shù)g(x)=$\frac{f(x)}{x}$,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=x2+ax+b+1,關(guān)于x的不等式f(x)-(2b-1)x+b2<1的解集為(b,b+1),其中b≠0.
(Ⅰ)求a的值;
(Ⅱ)令g(x)=$\frac{f(x)}{x-1}$,若函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),求實(shí)數(shù)k的取值范圍,并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.$\frac{cos10°(1+\sqrt{3}tan10°)}{cos50°}$的值是2.

查看答案和解析>>

同步練習(xí)冊答案