分析:(I)根據(jù)f(x)=ax
3-(a+2)x
2+6x-c(a,c為常數(shù))為奇函數(shù),可得c=0,a=-2,從而可得函數(shù)解析式,進(jìn)而可求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)a≤0時(shí),函數(shù)y=g(x)與y=f(x)的圖象的交點(diǎn)個(gè)數(shù)即為方程f(x)=g(x)的根的個(gè)數(shù),即ax
3-
(a+2)x
2+6x-3=0的根的個(gè)數(shù),構(gòu)造函數(shù)F(x)=ax
3-
(a+2)x
2+6x-3,即求函數(shù)y=F(x)的圖象與x軸的交點(diǎn)的個(gè)數(shù),分類討論:①當(dāng)a=0時(shí),F(xiàn)(x)=-3(x-1)
2,函數(shù)y=F(x)的圖象與x軸只有一個(gè)交點(diǎn);②當(dāng)a<0時(shí),
<1,確定函數(shù)的單調(diào)性與極值,可得函數(shù)y=F(x)的圖象與x軸有3個(gè)不同交點(diǎn).
解答:解:(I)∵f(x)=ax
3-(a+2)x
2+6x-c(a,c為常數(shù))為奇函數(shù),
∴f(-x)=-f(x),
∴ax
3-(a+2)x
2-6x-c=-ax
3+(a+2)x
2-6x+c
∴c=0,a=-2
∴f(x)=-2x
3+6x
∴f′(x)=-6(x+1)(x-1)
令f′(x)>0,可得-1<x<1;令f′(x)<0,可得x<-1或x>1
∴函數(shù)的單調(diào)遞增區(qū)間為(-1,1),單調(diào)遞減區(qū)間為(-∞,-1),(1,+∞)
(II)記
g(x)=(a+2)x2+3-c,當(dāng)a≤0時(shí),函數(shù)y=g(x)與y=f(x)的圖象的交點(diǎn)個(gè)數(shù)即為方程f(x)=g(x)的根的個(gè)數(shù),即ax
3-
(a+2)x
2+6x-3=0的根的個(gè)數(shù).
令F(x)=ax
3-
(a+2)x
2+6x-3,即求函數(shù)y=F(x)的圖象與x軸的交點(diǎn)的個(gè)數(shù)
F′(x)=3(x-1)(ax-2)
①當(dāng)a=0時(shí),F(xiàn)(x)=-3(x-1)
2,函數(shù)y=F(x)的圖象與x軸只有一個(gè)交點(diǎn);
②當(dāng)a<0時(shí),
<1,F(xiàn)′(x)=3a(x-1)(x-
)
當(dāng)x<
時(shí),函數(shù)單調(diào)減,
<x<1時(shí),函數(shù)單調(diào)增,當(dāng)x>1時(shí),函數(shù)單調(diào)減
∴當(dāng)x=
時(shí),函數(shù)取得極小值為
-4(-)2-<0;當(dāng)x=1時(shí),函數(shù)取得極大值
->0∵F(2)=2a-3<0
∴函數(shù)y=F(x)的圖象與x軸有3個(gè)不同交點(diǎn)
綜上所述,當(dāng)a=0時(shí),函數(shù)y=F(x)的圖象與x軸只有一個(gè)交點(diǎn);當(dāng)a<0時(shí),函數(shù)y=F(x)的圖象與x軸有3個(gè)不同交點(diǎn).