【題目】選修4-5:不等式選講
已知函數(shù) ( ).
(1)若 ,求不等式 的解集;
(2)若對于任意的 , ,都有 恒成立,求實(shí)數(shù) 的取值范圍.
【答案】
(1)
當(dāng) 時(shí), ,
若 ,則 ,于是由 解得 ,綜合得 ,
若 ,則 ,顯然 不成立,
若 ,則 ,于是由 解得 ,綜合得 ;
(2)
等價(jià)于 ,令 ,
當(dāng) 時(shí), ,顯然 ,
當(dāng) 時(shí), ,此時(shí)
當(dāng) 時(shí), , ,
∴當(dāng) 時(shí), .
∴ .
綜上,t的取值范圍是 .
【解析】本題考查含絕對值不等式的解法,不等式恒成立等基礎(chǔ)知識,意在考查分類討論的數(shù)學(xué)思想方法,以及分析問題、解決問題的能力.
【考點(diǎn)精析】本題主要考查了絕對值不等式的解法的相關(guān)知識點(diǎn),需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動(dòng)點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn). (Ⅰ)求P點(diǎn)的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個(gè)頂點(diǎn)都在曲線C上,且對角線EG,F(xiàn)H過原點(diǎn)O,若kEGkFH=﹣ ,求證:四邊形EFGH的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|x﹣1|﹣|2x+3|.
(1)解不等式f(x)>2;
(2)關(guān)于x的不等式f(x)≤ a2﹣a的解集為R,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinA, )與 =(3,sinA+ )共線,其中A是△ABC的內(nèi)角.
(1)求角A的大小;
(2)若BC=2,求△ABC面積S的最大值,并判斷S取得最大值時(shí)△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 = ( ).
(Ⅰ)當(dāng) =2時(shí),求函數(shù) 在(1, )處的切線方程;
(Ⅱ)若 ≥1時(shí), ≥0,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓x2+y2=r2(y≤0,r>0)和部分拋物線y=a(x2﹣1)(y≥0,a>0)合成的曲線C稱為“羽毛球形線”,曲線C與x軸有A、B兩個(gè)焦點(diǎn),且經(jīng)過點(diǎn)(2.3).
(1)求a、r的值;
(2)設(shè)N(0,2),M為曲線C上的動(dòng)點(diǎn),求|MN|的最小值;
(3)過A且斜率為k的直線l與“羽毛球形線”相交于P,A,Q三點(diǎn),問是否存在實(shí)數(shù)k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A,B,C的對邊分別為a、b、c, ,△ABC的面積為 .
(Ⅰ)求c的值;
(Ⅱ)求cos(B﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+cos2( ﹣x)﹣ (x∈R).
(1)求函數(shù)f(x)在區(qū)間[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com