【題目】如圖,由半圓x2+y2=r2(y≤0,r>0)和部分拋物線(xiàn)y=a(x2﹣1)(y≥0,a>0)合成的曲線(xiàn)C稱(chēng)為“羽毛球形線(xiàn)”,曲線(xiàn)C與x軸有A、B兩個(gè)焦點(diǎn),且經(jīng)過(guò)點(diǎn)(2.3).
(1)求a、r的值;
(2)設(shè)N(0,2),M為曲線(xiàn)C上的動(dòng)點(diǎn),求|MN|的最小值;
(3)過(guò)A且斜率為k的直線(xiàn)l與“羽毛球形線(xiàn)”相交于P,A,Q三點(diǎn),問(wèn)是否存在實(shí)數(shù)k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:將(2,3)代入y=a(x2﹣1),解得:a=1,由y=x2﹣1與x軸交于(±1,0),
則A(1,0),B(﹣1,0),
代入圓x2+y2=r2,解得:r=±1,由r>0,則r=1,
∴a的值為1,r的值為1
(2)解:設(shè)M(x0,y0),則丨MN丨2=x02+(y0﹣2)2,
當(dāng)y0≤0,x02=1﹣y02,丨MN丨2=5﹣4y0,
∴當(dāng)y0=0時(shí),丨MN丨min= ,
當(dāng)y≥0時(shí),x02=1+y0,丨MN丨2=x02+(y0﹣2)2=1+y0+(y0﹣2)2=y02﹣3y0+5=(y0﹣ )2+ ,
當(dāng)y0= 時(shí),丨MN丨min=
(3)解:由題意可知:PQ的方程y=k(x﹣1), ,整理得:x2﹣kx+k﹣1=0,
則x=1,y=k﹣1,則Q(k﹣1,k2﹣2k),
則 ,整理得:(1+k2)x2﹣2k2x+k2﹣1=0,
解得:x=1或x= ,
則P點(diǎn)坐標(biāo)為( ,﹣ ),
由∠QBA=∠PBA,
則kBP=﹣kBQ,即 =﹣ ,
即k2﹣2k﹣1=0,解得:k=1± (負(fù)值舍去),
因此存在實(shí)根k=1+ ,使得∠QBA=∠PBA
【解析】(1)由將點(diǎn)代入拋物線(xiàn)方程,即可求得a的值,求得A,B點(diǎn)坐標(biāo),代入圓方程,即可r的值;(2)根據(jù)兩點(diǎn)之間的距離公式,采用分類(lèi)討論,根據(jù)二次函數(shù)的性質(zhì),即可求得|MN|的最小值;(3)將直線(xiàn)方程,代入拋物線(xiàn)及圓的方程求得Q及P點(diǎn)坐標(biāo),由kBP=﹣kBQ , 即可求得k的值,因此存在實(shí)根k=1+ ,使得∠QBA=∠PBA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為( )
A.24+8 +8
B.20+8 +4 ??
C.20+8 +4
D.20+4 +4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為16,20,則輸出的a=( )
A.0
B.2
C.4
D.14
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù) ( ).
(1)若 ,求不等式 的解集;
(2)若對(duì)于任意的 , ,都有 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn , 則下列結(jié)論正確的是( )
A.若a1+a2>0,則a1+a3>0
B.若a1+a3>0,則a1+a2>0
C.若a1>0,則S2017>0
D.若a1>0,則S2016>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn) ,θ∈[0,2π)上一點(diǎn)P(x,y)到定點(diǎn)M(a,0),(a>0)的最小距離為 ,則a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[m,n]上的函數(shù),記F(x)=f(x)﹣(ax+b),|F(x)|的最大值為M(a,b).若存在m≤x1<x2<x3≤n,滿(mǎn)足|F(x1)|=M(a,b),F(xiàn)(x2)=﹣F(x1).F(x3)=F(x1),則稱(chēng)一次函數(shù)y=ax+b是f(x)的“逼近函數(shù)”,此時(shí)的M(a,b)稱(chēng)為f(x)在[m,n]上的“逼近確界”.
(1)驗(yàn)證:y=4x﹣1是g(x)=2x2 , x∈[0,2]的“逼近函數(shù)”;
(2)已知f(x)= ,x∈[0,4],F(xiàn)(0)=F(4)=﹣M(a,b).若y=ax+b是f(x)的“逼近函數(shù)”,求a,b的值;
(3)已知f(x)= ,x∈[0,4]的逼近確界為 ,求證:對(duì)任意常數(shù)a,b,M(a,b)≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+ )﹣2cos2B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線(xiàn)C是平面內(nèi)到直線(xiàn)l1:x=﹣1和直線(xiàn)l2:y=1的距離之積等于常數(shù)k2(k>0)的點(diǎn)的軌跡,下列四個(gè)結(jié)論:
①曲線(xiàn)C過(guò)點(diǎn)(﹣1,1);
②曲線(xiàn)C關(guān)于點(diǎn)(﹣1,1)成中心對(duì)稱(chēng);
③若點(diǎn)P在曲線(xiàn)C上,點(diǎn)A、B分別在直線(xiàn)l1、l2上,則|PA|+|PB|不小于2k;
④設(shè)P0為曲線(xiàn)C上任意一點(diǎn),則點(diǎn)P0關(guān)于直線(xiàn)l1:x=﹣1,點(diǎn)(﹣1,1)及直線(xiàn)f(x)對(duì)稱(chēng)的點(diǎn)分別為P1、P2、P3 , 則四邊形P0P1P2P3的面積為定值4k2;其中,
所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com