【題目】已知曲線 ,θ∈[0,2π)上一點(diǎn)P(x,y)到定點(diǎn)M(a,0),(a>0)的最小距離為 ,則a= .
【答案】 或
【解析】解:由丨PM丨2=(2cosθ﹣a)2+sin2θ=3cos2θ﹣4acosθ+1+a2 , 設(shè)cosθ=t,t∈[﹣1,1],設(shè)f(t)=3t2﹣4at+1+a2 , t∈[﹣1,1],
由二次函數(shù)的性質(zhì),對(duì)稱(chēng)軸t= ,由0< <1時(shí),0<a< ,
則當(dāng)t= 時(shí),取最小值為:1﹣ ,則1﹣ = ,解得:a=± ,
由0<a< ,則a= ,
當(dāng) >1時(shí),即a> ,則f(t)在[﹣1,1],單調(diào)遞減,
則當(dāng)t=1時(shí)取最小值,最小值為:a2+4﹣4a,
∴a2+4﹣4a= ,整理得:16a2﹣64a+55=0,解得:a= 或a= ,
由a> ,則a= ,
綜上可知:a的值為: 或 ,
所以答案是: 或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)已知拋物線C:y2=2px的焦點(diǎn)為F1 , 過(guò)F1的直線l與曲線C相交于M,N兩點(diǎn).
(1)若直線l的傾斜角為60°,且|MN|= ,求p;
(2)若p=2,橢圓 +y2=1上兩個(gè)點(diǎn)P,Q,滿足:P,Q,F(xiàn)1三點(diǎn)共線且PQ⊥MN,求四邊形PMQN的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sinA, )與 =(3,sinA+ )共線,其中A是△ABC的內(nèi)角.
(1)求角A的大小;
(2)若BC=2,求△ABC面積S的最大值,并判斷S取得最大值時(shí)△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 = ( ).
(Ⅰ)當(dāng) =2時(shí),求函數(shù) 在(1, )處的切線方程;
(Ⅱ)若 ≥1時(shí), ≥0,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由半圓x2+y2=r2(y≤0,r>0)和部分拋物線y=a(x2﹣1)(y≥0,a>0)合成的曲線C稱(chēng)為“羽毛球形線”,曲線C與x軸有A、B兩個(gè)焦點(diǎn),且經(jīng)過(guò)點(diǎn)(2.3).
(1)求a、r的值;
(2)設(shè)N(0,2),M為曲線C上的動(dòng)點(diǎn),求|MN|的最小值;
(3)過(guò)A且斜率為k的直線l與“羽毛球形線”相交于P,A,Q三點(diǎn),問(wèn)是否存在實(shí)數(shù)k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領(lǐng)海的分界線,一艘巡邏艇在O處發(fā)現(xiàn)了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點(diǎn)的軌跡;
(2)若O與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船(即不能截獲走私船的區(qū)域與公海不想交).則O,A之間的最遠(yuǎn)距離是多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A,B,C的對(duì)邊分別為a、b、c, ,△ABC的面積為 .
(Ⅰ)求c的值;
(Ⅱ)求cos(B﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有 ;
(1)試證明數(shù)列{bn}是等差數(shù)列,并求其通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2017項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ai與ai+1之間插入i個(gè)(﹣1)ibi(i∈N*)后,得到一個(gè)新數(shù)列{cn},求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,若存在,求實(shí)數(shù)λ的范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com