若函數(shù)f(x)=loga(a-x)在[2,3]上單調(diào)遞減,則a的取值范圍是
 
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的單調(diào)性的條件判斷
a>0
a-3>0
a>1
求解即可.
解答: 解:∵函數(shù)f(x)=loga(a-x)在[2,3]上單調(diào)遞減,u(x)=a-x在[2,3]上單調(diào)遞減,
a>0
a-3>0
a>1
,解得a>3
故答案為:a>3,
點(diǎn)評:本題考查了函數(shù)的性質(zhì),復(fù)合函數(shù)的單調(diào)性的求解,注意定義域的限制,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA、PB切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是(  )
A、
12
5
B、
12
5
13
C、
3
5
13
D、
2
3
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①正相關(guān),②負(fù)相關(guān),③不相關(guān),則下列散點(diǎn)圖分別反映的變量是( 。
A、①②③B、②③①
C、②①③D、①③②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2-1上兩點(diǎn)A(2,3),B(2+△x,3△y),當(dāng)△x=1,割線AB斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-1,x≤1
1+log2xx>1
,則函數(shù)f(x)的零點(diǎn)為(  )
A、
1
2
,0
B、-2,0
C、C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
sinx(
π
6
<x<
π
2
)
的值域是( 。
A、(0,
1
4
B、(
1
4
,
1
2
)
C、(0,
1
2
)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在區(qū)間[-1,1]上隨機(jī)地取一個數(shù)x,則-π(x2-1)的值介于
9
到π之間的概率為( 。
A、
1
3
B、
2
π
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩個正方形ABCD 和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有
 
  (填寫正確的序號)
(1)已知f(n)=sin
6
,則f(1)+f(2)+…+f(2014)=1;
(2)已知向量
OA
=(0,1),
OB
=(k,k),
OC
=(1,3),且
AB
AC
,則實(shí)數(shù)k=-1;
(3)四位二進(jìn)制數(shù)能表示的最大十進(jìn)制數(shù)是15;
(4)函數(shù)y=cos(2x+
π
3
)的圖象的一個對稱中心是(
π
12
,0)
(5)若對任意實(shí)數(shù)a,函數(shù)y=5sin(
2k+1
3
πx-
π
6
)(k∈N)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)不少于4次且不多于8次,則k的值是2.

查看答案和解析>>

同步練習(xí)冊答案