20.一個(gè)幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為64+32$\sqrt{2}$cm2,體積為$\frac{160}{3}$cm.

分析 由題意,直觀圖為三棱柱,割去一個(gè)三棱錐,三棱柱的底面是直角邊為4cm的等腰直角三角形,高為8cm,三棱錐的底面是直角邊為4cm的等腰直角三角形,高為4cm,即可求出幾何體的表面積、體積.

解答 解:由題意,直觀圖為三棱柱,割去一個(gè)三棱錐,三棱柱的底面是直角邊為4cm的等腰直角三角形,高為8cm,三棱錐的底面是直角邊為4cm的等腰直角三角形,高為4cm,
幾何體的表面積為$\frac{1}{2}×4×4+\frac{1}{2}×4×4\sqrt{2}+\frac{1}{2}×4×8+\frac{4+8}{2}×4\sqrt{2}$+$\frac{4+8}{2}×4$=64+32$\sqrt{2}$cm2,
體積為$\frac{1}{2}×4×4×8-\frac{1}{3}×\frac{1}{2}×4×4×4$=$\frac{160}{3}$cm3
故答案為64+32$\sqrt{2}$,$\frac{160}{3}$.

點(diǎn)評(píng) 本題考查由三視圖求面積、體積、考查學(xué)生的計(jì)算能力,確定直觀圖的現(xiàn)狀是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若a=20.5,b=log0.25,c=0.52,則a、b、c三個(gè)數(shù)的大小關(guān)系式( 。
A.c<a<bB.b<c<aC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),則sin2α的值為( 。
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{24}{25}$D.-$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.以圓C1:x2+y2+4x+1=0與圓C2:x2+y2+2x+2y+1=0相交的公共弦為直徑的圓的方程為(  )
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+$\frac{3}{5}$)2+(y+$\frac{6}{5}$)2=$\frac{4}{5}$D.(x-$\frac{3}{5}$)2+(y-$\frac{6}{5}$)2=$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.△ABC滿足下列條件:①b=12,c=9,C=60°②b=3,c=4,B=30°;③b=3$\sqrt{3}$,c=6,B=60°;④a=5,b=8,A=30°.其中有兩個(gè)解的是( 。
A.①②B.②③C.①③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓E的中心為坐標(biāo)原點(diǎn),離心率為$\frac{1}{2}$,E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A,B是C的準(zhǔn)線與E的兩個(gè)交點(diǎn),則|AB|=( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=1+$\frac{4}{x}$,g(x)=log2x;
設(shè)函數(shù)h(x)=g(x)-f(x)求函數(shù)h(x)在區(qū)間[2,4]上的值域;
定義min{p,q}表示p,q中較小者,設(shè)函數(shù)H(x)=min{f(x),g(x)}(x>0)
①求函數(shù)H(x)的最大值;
②若函數(shù)y=H(x)-k有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某幾何體的三視圖如圖所示,則該幾何體的外接球表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)$f(x)={2}^{x}+\frac{1}{4•{2}^{x}}$的最小值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案