f(x)是定義在R上的偶函數(shù),且f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則( 。
A、f(-3)<f(-2)<f(1)
B、f(1)<f(-2)<f(3)
C、f(-2)<f(1)<f(3)
D、f(3)<f(1)<f(-2)
考點(diǎn):奇偶性與單調(diào)性的綜合
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,進(jìn)行轉(zhuǎn)化即可比較大小.
解答: 解:∵f(x)是定義在R上的偶函數(shù),且f(x)在區(qū)間[0,+∞)上單調(diào)遞減,
∴f(3)<f(2)<f(1),
即f(-3)<f(-2)<f(1),
故選:A
點(diǎn)評(píng):本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a>b,則下列各式正確的是( 。
A、a•2x>b•2x
B、ax2>bx2
C、a2>b2
D、a•lgx>b•lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an=1,且an+1=2an+n-2×3n-1-1,數(shù)列{bn}的前n項(xiàng)和Sn=2n-1,求數(shù)列{an},{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知梯形ABCD的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,3)、B(-2,1)、C(4,5),求此梯形中位線(xiàn)所在直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式ln2x+lnx<0的解集是 ( 。
A、(e-1,1)
B、(1,e)
C、(0,1)
D、(0,e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)fM(x)的定義域?yàn)镽,且定義如下:fM(x)=
1,x∈M
0,x∉M
(其中M為非空數(shù)集且M?R),若A,B是實(shí)數(shù)集R的兩個(gè)非空真子集且滿(mǎn)足A∩B≠∅,則函數(shù)F(x)=
fA∪B(x)+fA∩B(x)
fA(x)+fB(x)+1
的值域?yàn)椋ā 。?/div>
A、{0,
1
2
}
B、{0,1}
C、{0,
2
3
,1}
D、{0,
1
2
,
2
3
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-[x]x≥0
f(x+1)x<0
,其中[x]表示不超過(guò)x的最大整數(shù)(如[-1.1]=-2,[π]=3,…).則函數(shù)y=f(x)與函數(shù)y=log3|x|的圖象交點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α的終邊在x軸下方,則角α的集合用區(qū)間表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|x2-a≥0},B={x|x<2},若CRA⊆B,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,4]
B、[0,4]
C、(-∞,4)
D、(0,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案