【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(2 , ). (Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△PAB的面積.

【答案】解:(Ⅰ)∵直線l的參數(shù)方程為 (t為參數(shù)),

消去參數(shù)t,得到直線l的普通方程為y=

,∴ ,

∴直線l的極坐標(biāo)方程為 (ρ∈R),

∵曲線C的參數(shù)方程為 (θ為參數(shù)),

∴曲線C的普通方程為:(x﹣1)2+(y﹣2 2=4,

則(ρcosθ﹣1)2+( 2=4,

則曲線C的極坐標(biāo)方程為

(Ⅱ)由 ,

得到ρ2﹣7ρ+9=0,設(shè)其兩根為ρ1,ρ2,

則ρ12=7,ρ1ρ2=9,

∴|AB|=|ρ2﹣ρ1|= = ,

∵點(diǎn)P的極坐標(biāo)為( ),∴|OP|=2 , ,

∴△PAB的面積:SPAB=|SPOB﹣SPOA|= =


【解析】(Ⅰ)直線l的參數(shù)方程消去參數(shù)t,得到直線l的普通方程為y= ,由此能求出直線l的極坐標(biāo)方程;曲線C的參數(shù)方程消去參數(shù)θ,得曲線C的普通方程,由此能求出曲線C的極坐標(biāo)方程.(Ⅱ)由 ,得到ρ2﹣7ρ+9=0,由韋達(dá)定理、弦長(zhǎng)公式求出|AB|,△PAB的面積SPAB=|SPOB﹣SPOA|,由此能求出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCDAB⊥AD,AC⊥CD,∠ABC=60°PA=AB=BC,

EPC的中點(diǎn).求證:

CD⊥AE;

PD⊥平面ABE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(2)對(duì)一切實(shí)數(shù)x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明對(duì)一切x∈(0,+∞),lnx> 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題: ①β∈R,f(x+β)為奇函數(shù);
α∈(0, ),f(x)=f(x+2α)對(duì)x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為
x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有(
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A(n)表示正整數(shù)n的個(gè)位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項(xiàng)和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績(jī)實(shí)行“3+3”的構(gòu)成模式,第一個(gè)“3”是語(yǔ)文、數(shù)學(xué)、外語(yǔ),每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級(jí)性考試,每門滿分100分,高考錄取成績(jī)卷面總分滿分750分.為了調(diào)查學(xué)生對(duì)物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體S,從學(xué)生群體S中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如表:

選考物理、化學(xué)、生物的科目數(shù)

1

2

3

人數(shù)

5

25

20

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學(xué)生中任選2名,記X表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(III)將頻率視為概率,現(xiàn)從學(xué)生群體S中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA⊥☉O所在的平面,AB是☉O的直徑,C是☉O上的一點(diǎn),AE⊥PB于E,AF⊥PC于F,給出下列結(jié)論:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCDABCD的棱長(zhǎng)為a,連接AC,AD,AB,BD,BC,CD,得到一個(gè)三棱錐.求:

(1)三棱錐ABCD的表面積與正方體表面積的比值;

(2)三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=是定義在[-l,1]上的奇函數(shù),且f()=

(1)確定函數(shù)f(x)的解析式;

(2)判斷并用定義證明f(x)(-1,1)上的單調(diào)性;

(3)f(1-3m)+f(1+m)≥0,求實(shí)數(shù)m的所有可能的取值。

查看答案和解析>>

同步練習(xí)冊(cè)答案