19.已知函數(shù)f(x)=x2-2(a+1)x+2alnx
(1)若a=2.求f(x)的極值.
(2)若a>0.求f(x)的單調(diào)區(qū)間.

分析 (1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求函數(shù)的導數(shù),利用函數(shù)單調(diào)性和導數(shù)之間的關(guān)系,對a討論,分①當0<a<1時,②當a=1時,③當a>1時,即可求f(x)的單調(diào)區(qū)間.

解答 解:(1)a=2時,f(x)=x2-6x+4lnx,(x>0),
f′(x)=2x-6+$\frac{4}{x}$=$\frac{{2(x}^{2}-3x+2)}{x}$=$\frac{2(x-1)(x-2)}{x}$,
令f′(x)>0,解得:x>2或x<1,
令f′(x)<0,解得:1<x<2,
故f(x)在(0,1)遞增,在(1,2)遞減,在(2,+∞)遞增;
故f(x)極大值=f(1)=-5,f(x)極小值=f(2)=4ln2-8;
(2)∵f(x)=x2-2(a+1)x+2alnx(a>0).
∴f′(x)=2x-2(a+1)+$\frac{2a}{x}$=$\frac{{2x}^{2}-2(a+1)x+2a}{x}$,
由f'(x)=0得x1=a,x2=1,
①當0<a<1時,在x∈(0,a)或x∈(1,+∞)時,f'(x)>0;
在x∈(a,1)時,f'(x)<0.
∴f(x)的單調(diào)增區(qū)間是(0,a)和(1,+∞),單調(diào)減區(qū)間是(a,1);
②當a=1時,在x∈(0,+∞)時f'(x)≥0,
∴f(x)的單調(diào)增區(qū)間是(0,+∞);
③當a>1時,在x∈(0,1)或x∈(a,+∞)時,f'(x)>0;
在x∈(1,a)時,f'(x)<0.
∴f(x)的單調(diào)增區(qū)間是(0,1)和(a,+∞),單調(diào)減區(qū)間是(1,a).

點評 本題主要考查函數(shù)單調(diào)性和導數(shù)之間的關(guān)系,考查分類討論的思想方法,正確分類是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-(2a+1)x+alnx,a∈R
(1)若函數(shù)f(x)在(1,f(1))處的切線垂直于y軸,求實數(shù)a的值;
(2)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x>1時,f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=2x3-ax2+6(a∈R).
(1)討論f(x)的單調(diào)性;
(2)當a=9時,求方程$f(x)=\sqrt{2}$的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.關(guān)于函數(shù)$f(x)=4sin(2x+\frac{π}{3})(x∈R)$有下列命題,其中正確的是( 。
①y=f(x)的表達式可改寫為$y=4cos(2x-\frac{π}{6})$;
②y=f(x)的圖象關(guān)于點$(-\frac{π}{6},0)$對稱;
③y=f(x)是以2π為最小正周期的周期函數(shù);   
④y=f(x)的圖象關(guān)于直線$x=\frac{5π}{6}$對稱.
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.一輛卡車寬2.7米,要經(jīng)過一個半徑為4.5米的半圓形隧道(雙車道,不得違章),則這輛卡車的平頂車篷篷頂距離地面的高度不得超過( 。┟祝
A.1.4B.3.0C.3.6D.4.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,在一半徑等于1千米的圓弧及直線段道路AB圍成的區(qū)域內(nèi)計劃建一條商業(yè)街,其起點和終點均在道路AB上,街道由兩條平行于對稱軸l且關(guān)于l對稱的兩線段EF、CD,及夾在兩線段EF、CD間的弧組成.若商業(yè)街在兩線段EF、CD上收益為每千米2a元,在兩線段EF、CD間的弧上收益為每千米a元.已知$∠AOB=\frac{π}{2}$,設(shè)∠EOD=2θ,
(1)將商業(yè)街的總收益f(θ)表示為θ的函數(shù);
(2)求商業(yè)街的總收益的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)a=x,b=sinx,c=tanx,0<x<$\frac{π}{2}$,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x+3|+|x-1|:
(1)解不等式f(x)>6;
(2)若存在x0∈[-$\frac{3}{2}$,2]使不等式a+1>f(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案