8.設(shè)a=x,b=sinx,c=tanx,0<x<$\frac{π}{2}$,則(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

分析 當(dāng)0<x<$\frac{π}{2}$時,令f(x)=x-sinx,g(x)=tanx-x,根據(jù)導(dǎo)數(shù)的符號可得故f(x)和g(x)在(0,$\frac{π}{2}$)上單調(diào)遞增,故f(x)>0,g(x)>0,從而得到sinx<x<tanx.

解答 解:當(dāng)0<x<$\frac{π}{2}$時,令f(x)=x-sinx,g(x)=tanx-x,則f′(x)=1-cosx>0,g′(x)=$\frac{1}{co{s}^{2}x}$-1>0,
故f(x)和g(x)在(0,$\frac{π}{2}$)上單調(diào)遞增,故f(x)>f(0)=0,g(x)>g(0)=0,
∴x>sinx,且tanx>x,∴sinx<x<tanx.
故選D.

點(diǎn)評 本題主要考查三角函數(shù)線的定義,利用導(dǎo)數(shù)的符號研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0).y=f(x)圖象的一條對稱軸是直線$x=\frac{π}{8}$.
(1)求函數(shù)f(x)的解析式;
(2)為了得到$y=2sin(2x-\frac{π}{6})$的圖象,由f(x)怎么樣變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2(a+1)x+2alnx
(1)若a=2.求f(x)的極值.
(2)若a>0.求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如果由一個2×2列聯(lián)表中的數(shù)據(jù)計算得k=4.073,那么有95%的把握認(rèn)為兩變量有關(guān)系,已知P(k2≥3.841)≈0.05,P(k2≥5.024)≈0.025.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三個數(shù)sin20°,cos40°,tan50°的大小關(guān)系是( 。
A.sin20°<cos40°<tan50°B.cos40°<sin20°<tan50°
C.tan50°<cos40°<sin20°D.sin20°<tan50°<cos40°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在長方形OABC內(nèi)任取一點(diǎn)P,則點(diǎn)P落在陰影部分內(nèi)的概率為1-$\frac{3}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若O為△ABC所在平面內(nèi)任一點(diǎn),且滿足($\overrightarrow{OB}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)=0,則△ABC的形狀為(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在空間中,下列說法不正確的是(  )
A.三點(diǎn)確定一個平面B.梯形定是平面圖形
C.平行四邊形一定是平面圖形D.三角形一定是平面圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.觀察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$;1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$…則可歸納出第n-1個式子為1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$.

查看答案和解析>>

同步練習(xí)冊答案