【題目】現(xiàn)有4名同學(xué)去參加校學(xué)生會(huì)活動(dòng),共有甲、乙兩類活動(dòng)可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動(dòng),擲出點(diǎn)數(shù)為1或2的人去參加甲類活動(dòng),擲出點(diǎn)數(shù)大于2的人去參加乙類活動(dòng).
(1)求這4個(gè)人中恰有2人去參加甲類活動(dòng)的概率;
(2)用X,Y分別表示這4個(gè)人中去參加甲、乙兩類活動(dòng)的人數(shù).記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).
【答案】
(1)解:依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為 .
設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)= ( )i( )4﹣i.
∴這4個(gè)人中恰有2人去參加甲游戲的概率為P(A2)=
(2)解:ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,
故P(ξ=0)=P(A2)= ,
P(ξ=2)=P(A1)+P(A3)= ,
P(ξ=4)=P(A0)+P(A4)= ,
∴ξ的分布列是:
ξ | 0 | 2 | 4 |
P |
數(shù)學(xué)期望Eξ=0× +2× +4× =
【解析】(1)依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為 .設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)= ( )i( )4﹣i . 由此能求出這4個(gè)人中恰有2人去參加甲游戲的概率.(2)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.
【考點(diǎn)精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)點(diǎn),需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函數(shù)f(x)= ﹣1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在銳角△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,tanB= ,對(duì)任意滿足條件的A,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在棱長(zhǎng)為a的正方體ABCD﹣A1B2C3D4中,點(diǎn)E,F(xiàn)分別在棱AD,BC上,且AE=BF= a.過(guò)EF的平面繞EF旋轉(zhuǎn),與DD1、CC1的延長(zhǎng)線分別交于G,H點(diǎn),與A1D1、B1C1分別交于E1 , F1點(diǎn).當(dāng)異面直線FF1與DD1所成的角的正切值為 時(shí),|GF1|=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有大小相同的四個(gè)球,四個(gè)球上分別標(biāo)有數(shù)字“2”,“3”,“4”,“6”,現(xiàn)從中隨機(jī)選取三個(gè)球,則所選的三個(gè)球上的數(shù)字能構(gòu)成等差數(shù)列的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過(guò)200度的部分按0.5元/度收費(fèi),超過(guò)200度但不超過(guò)400度的部分按0.8元/度收費(fèi),超過(guò)400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用y(單位:元)關(guān)于月用電量x(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過(guò)抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過(guò)260元的點(diǎn)80%,求a,b的值;
(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,記Y為該居民用戶1月份的用電費(fèi)用,求Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中的程序框圖的算法思路來(lái)源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時(shí),則輸出的i=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
B.已知相關(guān)變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個(gè)單位,則y平均增加4個(gè)單位
C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]為真命題
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com