【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

【答案】證明:(Ⅰ)取AB中點(diǎn)O,連接OC,OA1 ,

∵CA=CB,AB=A1A,∠BAA1=60°
∴OC⊥AB,OA1⊥AB,
∵OC∩OA1=O,
∴AB⊥平面OCA1 ,
∵CA1平面OCA1 ,
∴AB⊥A1C;
(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交線為AB,
所以O(shè)C⊥平面AA1B1B,故OA,OA1 , OC兩兩垂直.
以O(shè)為坐標(biāo)原點(diǎn), 的方向?yàn)閤軸的正向,建立如圖所示的坐標(biāo)系,
可得A(1,0,0),A1(0, ,0),C(0,0, ),B(﹣1,0,0),
=(1,0, ), = =(﹣1, ,0), =(0,﹣ , ),
設(shè) =(x,y,z)為平面BB1C1C的法向量,

可取y=1,可得 =( ,1,﹣1),故cos< , >=﹣
又因?yàn)橹本與法向量的余弦值的絕對(duì)值等于直線與平面的正弦值,
故直線A1C與平面BB1C1C所成角的正弦值為:

【解析】(Ⅰ)取AB中點(diǎn),連接OC,OA1 , 得出OC⊥AB,OA1⊥AB,運(yùn)用AB⊥平面OCA1 , 即可證明.(Ⅱ)易證OA,OA1 , OC兩兩垂直.以O(shè)為坐標(biāo)原點(diǎn), 的方向?yàn)閤軸的正向建立坐標(biāo)系,可向量的坐標(biāo),求出平面BB1C1C的法向量,代入向量夾角公式,可得答案.
【考點(diǎn)精析】關(guān)于本題考查的空間中直線直線之間的位置關(guān)系和空間角的異面直線所成的角,需要了解相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn);已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1 , E、F分別是CC1 , BC的中點(diǎn).
(1)求證:平面AB1F⊥平面AEF;
(2)求二面角B1﹣AE﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整數(shù)a的最小值;
(3)若正實(shí)數(shù)x1 , x2滿足f(x1)+f(x2)+4(x +x )+12(x1+x2)=4,證明:x1+x2≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(I)若N為線段DC1上的點(diǎn),且直線MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正方體ABCD﹣A1B1C1D1的頂點(diǎn)A的平面α與平面CB1D1平行,設(shè)α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后若輸出S的值是2,則判斷框內(nèi)可填寫(
A.i≤2015?
B.i≤2016?
C.i≤2017?
D.i≤2018?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4名同學(xué)去參加校學(xué)生會(huì)活動(dòng),共有甲、乙兩類活動(dòng)可供參加者選擇,為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動(dòng),擲出點(diǎn)數(shù)為1或2的人去參加甲類活動(dòng),擲出點(diǎn)數(shù)大于2的人去參加乙類活動(dòng).
(1)求這4個(gè)人中恰有2人去參加甲類活動(dòng)的概率;
(2)用X,Y分別表示這4個(gè)人中去參加甲、乙兩類活動(dòng)的人數(shù).記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個(gè),則t的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的一個(gè)頂點(diǎn)為A(0,﹣1),焦點(diǎn)在x軸上,若橢圓右焦點(diǎn)到直線x﹣y+2 =0的距離為3 (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0)與該橢圓交于不同的兩點(diǎn)B,C,若坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△BOC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案