【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個,則t的取值范圍是(
A.
B.
C.
D.

【答案】B
【解析】解:令y=xex , 則y'=(1+x)ex , 由y'=0,得x=﹣1, 當x∈(﹣∞,﹣1)時,y'<0,函數(shù)y單調遞減,
當x∈(﹣1,+∞)時,y'>0,函
數(shù)y單調遞增.作出y=xex圖象,
利用圖象變換得f(x)=|xex|圖象(如圖10),
令f(x)=m,則關于m方程h(m)=m2﹣tm+1=0
兩根分別在 時(如圖11),
滿足g(x)=﹣1的x有4個,由 ,
解得
故選:B.


【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調性,需要了解一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當a=1時,求函數(shù)f(x)的單調區(qū)間;
(2)若﹣1<x<1時,均有f(x)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有大小相同的四個球,四個球上分別標有數(shù)字“2”,“3”,“4”,“6”,現(xiàn)從中隨機選取三個球,則所選的三個球上的數(shù)字能構成等差數(shù)列的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用y(單位:元)關于月用電量x(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求a,b的值;
(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點值代替,記Y為該居民用戶1月份的用電費用,求Y的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若對任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖中的程序框圖的算法思路來源于我國古代數(shù)學名著《九章算術》中的”更相減損術“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時,則輸出的i=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M:x2+y2+2y﹣7=0和點N(0,1),動圓P經(jīng)過點N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點A是曲線E與x軸正半軸的交點,點B、C在曲線E上,若直線AB、AC的斜率k1 , k2 , 滿足k1k2=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》有如下問題:“今有人持金出五關,前關二而稅一,次關三而稅一,次關四而稅一,次關五而稅一,次關六而稅一,并五關所稅,適重一斤,問本持金幾何”其意思為“今有人持金出五關,第1關收稅金 ,第2關收稅金為剩余金的 ,第3關收稅金為剩余金的 ,第4關收稅金為剩余金的 ,第5關收稅金為剩余金的 ,5關所收稅金之和,恰好重1斤,問原來持金多少?”若將題中“5關所收稅金之和,恰好重1斤,問原來持金多少?”改成假設這個原來持金為x,按此規(guī)律通過第8關,則第8關需收稅金為x.

查看答案和解析>>

同步練習冊答案