【題目】已知圓M:x2+y2+2y﹣7=0和點(diǎn)N(0,1),動(dòng)圓P經(jīng)過(guò)點(diǎn)N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點(diǎn)A是曲線E與x軸正半軸的交點(diǎn),點(diǎn)B、C在曲線E上,若直線AB、AC的斜率k1 , k2 , 滿足k1k2=4,求△ABC面積的最大值.
【答案】
(1)解:圓M:x2+y2+2y﹣7=0的圓心為M(0,﹣1),半徑為
點(diǎn)N(0,1)在圓M內(nèi),因?yàn)閯?dòng)圓P經(jīng)過(guò)點(diǎn)N且與圓M相切,
所以動(dòng)圓P與圓M內(nèi)切.設(shè)動(dòng)圓P半徑為r,則 ﹣r=|PM|.
因?yàn)閯?dòng)圓P經(jīng)過(guò)點(diǎn)N,所以r=|PN|, >|MN|,
所以曲線E是M,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為 的橢圓.
由 ,得b2=2﹣1=1,
所以曲線E的方程為
(2)解:直線BC斜率為0時(shí),不合題意
設(shè)B(x1,y1),C(x2,y2),直線BC:x=ty+m,
聯(lián)立方程組 得 (1+2t2)y2+4mty+2m2﹣2=0,
又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)
= .
代入得
又m≠1,化簡(jiǎn)得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),
解得m=3,故直線BC過(guò)定點(diǎn)(3,0)
由△>0,解得t2>4, =
(當(dāng)且僅當(dāng) 時(shí)取等號(hào)).
綜上,△ABC面積的最大值為
【解析】(1)利用圓與圓的位置關(guān)系,得出曲線E是M,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為 的橢圓,即可求曲線E的方程;(2)聯(lián)立方程組 得 (1+2t2)y2+4mty+2m2﹣2=0,利用韋達(dá)定理,結(jié)合k1k2=4,得出直線BC過(guò)定點(diǎn)(3,0),表示出面積,即可求△ABC面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(I)若N為線段DC1上的點(diǎn),且直線MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個(gè),則t的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,”延遲退休“已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(Ⅰ)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的實(shí)義域?yàn)镽,其圖象關(guān)于點(diǎn)(﹣1,0)中心對(duì)稱,其導(dǎo)函數(shù)為f′(x),當(dāng)x<﹣1時(shí),(x+1)[f(x)+(x+1)f′(x)]<0.則不等式xf(x﹣1)>f(0)的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】莊子說(shuō):“一尺之錘,日取其半,萬(wàn)世不竭”,這句話描述的是一個(gè)數(shù)列問題,現(xiàn)用程序框圖描述,如圖所示,若輸入某個(gè)正整數(shù)n后,輸出的S∈( , ),則輸入的n的值為( )
A.7
B.6
C.5
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E的一個(gè)頂點(diǎn)為A(0,﹣1),焦點(diǎn)在x軸上,若橢圓右焦點(diǎn)到直線x﹣y+2 =0的距離為3 (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0)與該橢圓交于不同的兩點(diǎn)B,C,若坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△BOC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P為雙曲線 =1右支上的任意一點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點(diǎn),則平行四邊形PAOB的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列 的前 項(xiàng)和為 ,且滿足
(1)求數(shù)列 的通項(xiàng)公式 ;
(2)設(shè) ,令 ,求
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com