【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二而稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤,問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金 ,第2關(guān)收稅金為剩余金的 ,第3關(guān)收稅金為剩余金的 ,第4關(guān)收稅金為剩余金的 ,第5關(guān)收稅金為剩余金的 ,5關(guān)所收稅金之和,恰好重1斤,問原來持金多少?”若將題中“5關(guān)所收稅金之和,恰好重1斤,問原來持金多少?”改成假設(shè)這個原來持金為x,按此規(guī)律通過第8關(guān),則第8關(guān)需收稅金為x.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個,則t的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的一個頂點為A(0,﹣1),焦點在x軸上,若橢圓右焦點到直線x﹣y+2 =0的距離為3 (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0)與該橢圓交于不同的兩點B,C,若坐標(biāo)原點O到直線l的距離為 ,求△BOC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P為雙曲線 =1右支上的任意一點,O為坐標(biāo)原點,過點P作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點,則平行四邊形PAOB的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時,求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時,f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1 , AB1∩A1B=E,D為AC上的點,B1C∥平面A1BD.
(1)求證:BD⊥平面A1ACC1;
(2)若AB=1,且ACAD=1,求二面角B﹣A1D﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分 和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)由直方圖可以認(rèn)為,這批學(xué)生的數(shù)學(xué)總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 . ①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學(xué)生的數(shù)學(xué)總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計總體的分布).
附: ≈19, ≈18,若Z=~N(μ,2),則P(μ﹣σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com