【題目】(題文)在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù))在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.
(1)寫(xiě)出直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn).若直線(xiàn)與曲線(xiàn)相交于不同的兩點(diǎn),求的值.
【答案】(1);(2).
【解析】
分析:(1)將直線(xiàn)的參數(shù)方程消去參數(shù),得到普通方程,根據(jù),將曲線(xiàn)C的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)將直線(xiàn)的參數(shù)方程代入曲線(xiàn)C的直角坐標(biāo)方程,求出的值,再根據(jù)直線(xiàn)參數(shù)方程的幾何意義,求出的值。
詳解: (Ⅰ)由直線(xiàn)的參數(shù)方程消去參數(shù),得
化簡(jiǎn),得直線(xiàn)的普通方程為
又將曲線(xiàn)的極坐標(biāo)方程化為,
∴,
∴曲線(xiàn)的直角坐標(biāo)方程為.
(Ⅱ)將直線(xiàn)的參數(shù)方程代入中,得
化簡(jiǎn),得.
此時(shí).
此方程的兩根為直線(xiàn)與曲線(xiàn)的交點(diǎn)對(duì)應(yīng)的參數(shù),.
由根與系數(shù)的關(guān)系,得,
∴由直線(xiàn)參數(shù)的幾何意義,知
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(x0),x0∈[,],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要測(cè)量山頂上的電視塔FG的高度,已知山的西面有一棟樓AC(該樓的高度低于山的高度).試設(shè)計(jì)在樓AC上測(cè)山頂電視塔高度的測(cè)量、計(jì)算方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①回歸直線(xiàn)過(guò)樣本點(diǎn)中心(,)
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,平均值不變
③將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變
④在回歸方程=4x+4中,變量x每增加一個(gè)單位時(shí),y平均增加4個(gè)單位
其中錯(cuò)誤命題的序號(hào)是( 。
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某育種基地對(duì)某個(gè)品種的種子進(jìn)行試種觀察,經(jīng)過(guò)一個(gè)生長(zhǎng)期培養(yǎng)后,隨機(jī)抽取株作為樣本進(jìn)行研究。株高在及以下為不良,株高在到之間為正常,株高在及以上為優(yōu)等。下面是這個(gè)樣本株高指標(biāo)的莖葉圖和頻率分布直方圖,但是由于數(shù)據(jù)遞送過(guò)程出現(xiàn)差錯(cuò),造成圖表?yè)p毀。請(qǐng)根據(jù)可見(jiàn)部分,解答下面的問(wèn)題:
(1)求的值并在答題卡的附圖中補(bǔ)全頻率分布直方圖;
(2)通過(guò)頻率分布直方圖估計(jì)這株株高的中位數(shù)(結(jié)果保留整數(shù));
(3)從育種基地內(nèi)這種品種的種株中隨機(jī)抽取2株,記表示抽到優(yōu)等的株數(shù),由樣本的頻率作為總體的概率,求隨機(jī)變量的分布列(用最簡(jiǎn)分?jǐn)?shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若方程有五個(gè)不同的實(shí)數(shù)根,則 的取值范圍是( )
A.(0,+∞)B.(0,1)C.(-∞,0)D.(0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海濱浴場(chǎng)一天的海浪高度是時(shí)間的函數(shù),記作,下表是某天各時(shí)的浪高數(shù)據(jù):
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)選用一個(gè)三角函數(shù)來(lái)近似描述這個(gè)海濱浴場(chǎng)的海浪高度與時(shí)間的函數(shù)關(guān)系;
(2)依據(jù)規(guī)定,當(dāng)海浪高度不少于時(shí)才對(duì)沖浪愛(ài)好者開(kāi)放海濱浴場(chǎng),請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的至之間,有多少時(shí)間可供沖浪愛(ài)好者進(jìn)行沖浪?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知線(xiàn)C的極坐標(biāo)方程為:ρ=2sin(θ+),過(guò)P(0,1)的直線(xiàn)l的參數(shù)方程為:(t為參數(shù)),直線(xiàn)l與曲線(xiàn)C交于M,N兩點(diǎn).
(1)求出直線(xiàn)l與曲線(xiàn)C的直角坐標(biāo)方程.
(2)求|PM|2+|PN|2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com