不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的個數(shù)是( 。
A、0B、1C、2D、3
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“作差法”和實數(shù)的基本性質(zhì)即可得出.
解答: 解:①a2+2-2a=(a-1)2+1≥1,∴a2+2>2a,正確;
②∵a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1),正確;
③a2+b2-ab=(a-
1
2
b)2
+
3
4
b2
≥0,當且僅當a=b=0時取等號,正確.
綜上可得:①②③都恒成立.
故選:D.
點評:本題考查了“作差法”和實數(shù)的基本性質(zhì)、不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

計算下列各式
(1)2log525-3log216;
(2)(2a 
2
3
b 
1
2
)(-6a 
1
2
b 
1
3
)÷(-3a 
1
6
b 
5
6
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線3x-2y-6=0在x軸上的截距為a,在y軸上的截距為b,則(  )
A、a=2,b=3
B、a=-2,b=-3
C、a=-2,b=3
D、a=2,b=-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學舉行升旗儀式,如圖所示,在坡度為15°的看臺上,從正對旗桿的一列的第一排和最后一排測得旗桿頂部的仰角分別為60°和30°,第一排和最后一排的距離AB=10
6
m,則旗桿CD的高度為
 
m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形OAB的周長為4,弧長為AB.
(1)當∠AOB=60°時,求此時弧的半徑;
(2)當扇形面積最大時,求此時圓心角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=x2,若對任意的x∈[t,t+2],不等式f(x)≤9f(x+t)恒成立,則實數(shù)t的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖后,輸出的值為4,則P的取值范圍是( 。
A、(
3
4
,
7
8
]
B、(
2
3
,
7
8
]
C、(
4
5
,
8
9
]
D、(
5
6
9
10
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在[-6,6]上的偶函數(shù),且f(4)>f(1),則下列各式一定成立的是( 。
A、f(0)<f(6)
B、f(4)>f(3)
C、f(2)>f(0)
D、f(-1)<f(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn=2an-2,數(shù)列{bn}是首項為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足cn=
1
bnbn+1
,前n項和為Pn,對于?n∈N*不等式 Pn<t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案