4.已知f(x)是定義在R上的函數(shù),若方程f(f(x))=x有且僅有一個(gè)實(shí)數(shù)根,則f(x)的解析式可能是( 。
A.f(x)=|2x-1|B.f(x)=exC.f(x)=x2+x+1D.f(x)=sinx

分析 對于A,解絕對值的方程可得四個(gè)實(shí)數(shù)解,即可判斷;對于B,運(yùn)用函數(shù)y=ex-x的單調(diào)性,即可判斷;
對于C,由方程化簡和非負(fù)數(shù)的概念,即可判斷;對于D,由y=sinx-x的單調(diào)性,即可判斷.

解答 解:對于A,由f(f(x))=x,即為|2|2x-1|-1|=x,可得x=1或$\frac{1}{3}$或$\frac{1}{5}$或$\frac{3}{5}$,故A不可能;
對于B,由(ex-x)′=ex-1,可得y=ex-x的增區(qū)間為(0,+∞),減區(qū)間為(-∞,0),
即ex-x的最小值為e0-0=1>0,即有ex>x恒成立,則f(f(x))=x無實(shí)數(shù)解,故B不可能;
對于C,f(x)=x2+x+1,f(f(x))=(x2+x+1)2+(x2+x+1)+1=x,即為(x2+x+1)2+x2+2=0無實(shí)數(shù)解,
故C不可能;
對于D,由y=sinx-x的導(dǎo)數(shù)為y′=cosx-1≤0,可得函數(shù)y=sinx-x在R上遞減,由x=0時(shí),y=sin0-0=0,
可得sin(sin0)=sin0=0,且sin(sinx)-x在R上單調(diào),則f(f(x))=x有且僅有一個(gè)實(shí)數(shù)根0,故D可能.
故選:D.

點(diǎn)評 本題考查函數(shù)方程的轉(zhuǎn)化思想的運(yùn)用,考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前m(m≥4)項(xiàng)是公差為2的等差數(shù)列,從第m-1項(xiàng)起,am-1,am,am+1,…成公比為2的等比數(shù)列.若a1=-2,則m=4,{an}的前6項(xiàng)和S6=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow$=(-2,1),$\overrightarrow{a}$•$\overrightarrow$=5,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某工廠生產(chǎn)某種產(chǎn)品,用傳送帶將產(chǎn)品送至下一工序,質(zhì)量員每隔10分鐘在傳送帶某一位置取一件產(chǎn)品進(jìn)行檢驗(yàn),這種抽樣的方法為( 。
A.分層抽樣B.簡單隨機(jī)抽樣C.系統(tǒng)抽樣D.其它抽樣方式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的右焦點(diǎn)為F2,O為坐標(biāo)原點(diǎn),M為y軸上一點(diǎn),點(diǎn)A是直線MF2與橢圓C的一個(gè)交點(diǎn),且|OA|=|OF2|=2|OM|,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線y=4x+x2在點(diǎn)(-1,-3)處的切線方程是( 。
A.y=7x+4B.y=7x+2C.y=x-4D.y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校為了了解高三學(xué)生日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了50位學(xué)生進(jìn)行調(diào)查.下表是這50位同學(xué)睡眠時(shí)間的頻率分布表:(1)根據(jù)所給數(shù)據(jù),求眾數(shù)和中位數(shù);(2)現(xiàn)根據(jù)如下算法流程圖用計(jì)算機(jī)統(tǒng)計(jì)平均睡眠時(shí)間,則判斷框①中應(yīng)填入什么條件?(3)若從第1組和第5組中隨機(jī)取出2個(gè)數(shù)據(jù),求相應(yīng)的兩個(gè)同學(xué)的睡眠時(shí)間差的絕對值大于1小時(shí)的概率
組別(i)睡眠時(shí)間組中值(Zi頻數(shù)頻率(Pi
1[4.5,5.5)520.04
2[5.5,6.5)660.12
3[6.5,7.5)7200.40
4[7.5,8.5)8180.36
5[8.5,9.5)930.06
6[9.5,10.5)1010.02

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-ax=0恰有兩個(gè)不同的根,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{e}$)C.($\frac{1}{e}$,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow a=(cos(\frac{π}{3}+α),1)$,$\overrightarrow b=(1,4)$,如果$\overrightarrow a$∥$\overrightarrow b$,那么$cos(\frac{π}{3}-2α)$的值為$\frac{7}{8}$.

查看答案和解析>>

同步練習(xí)冊答案