【題目】己知橢圓的焦距為,以橢圓C的右頂點(diǎn)A為圓心的圓與直線相交于P,Q兩點(diǎn),且.
(I)求橢圓C的標(biāo)準(zhǔn)方程和圓A的方程。
(II)不過(guò)原點(diǎn)的直線l與橢圓C交于M,N兩點(diǎn),已知直線OM,l,ON的斜率成等比數(shù)列,記以線段OM,線段ON為直徑的圓的面積分別為的值是否為定值?若是,求出此值:若不是,說(shuō)明理由.
【答案】(Ⅰ),;(Ⅱ)答案見(jiàn)解析.
【解析】
分析:(1)設(shè)為的中點(diǎn),連接,則 ,所以 ,又,所以,從而易得關(guān)于a,b的方程組,即可得到所求橢圓方程和圓的方程.
(2)設(shè)直線l的方程為y=kx+m,代入橢圓方程,消去y,根據(jù)k1、k、k2恰好構(gòu)成等比數(shù)列,求出k,進(jìn)而表示出,即可得出結(jié)論.
詳解:(1)如圖,設(shè)為的中點(diǎn),連接,則 ,
因?yàn)?/span>,即 ,所以 ,
又,所以,所以 ,所以.
由已知得,所以
橢圓的方程為,
,
所以,所以,所以,
所以圓的方程為.
(2)設(shè)直線的方程為,
由,得,
所以,由題設(shè)知 ,
,
則
故為定值,該定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)是人們必不可少的工具,極大地方便了人們的生活、工作、學(xué)習(xí),現(xiàn)代社會(huì)的衣食住行都離不開(kāi)它.某調(diào)查機(jī)構(gòu)調(diào)查了某地區(qū)各品牌手機(jī)的線下銷(xiāo)售情況,將數(shù)據(jù)整理得如下表格:
品牌 | 其他 | ||||||
銷(xiāo)售比 | |||||||
每臺(tái)利潤(rùn)(元) | 100 | 80 | 85 | 1000 | 70 | 200 |
該地區(qū)某商場(chǎng)岀售各種品牌手機(jī),以各品牌手機(jī)的銷(xiāo)售比作為各品牌手機(jī)的售出概率.
(1)此商場(chǎng)有一個(gè)優(yōu)惠活動(dòng),每天抽取一個(gè)數(shù)字(,且),規(guī)定若當(dāng)天賣(mài)出的第臺(tái)手機(jī)恰好是當(dāng)天賣(mài)出的第一臺(tái)手機(jī)時(shí),則此手機(jī)可以打5折.為保證每天該活動(dòng)的中獎(jiǎng)概率小于0.05,求的最小值;(,)
(2)此商場(chǎng)中一個(gè)手機(jī)專(zhuān)賣(mài)店只出售和兩種品牌的手機(jī),,品牌手機(jī)的售出概率之比為,若此專(zhuān)賣(mài)店一天中賣(mài)出3臺(tái)手機(jī),其中手機(jī)臺(tái),求的分布列及此專(zhuān)賣(mài)店當(dāng)天所獲利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列4個(gè)結(jié)論:
①函數(shù)與函數(shù)的定義域相同,②函數(shù)(為常數(shù))圖像可由的圖像平移得到,③函數(shù)是奇函數(shù)且是偶函數(shù),④若冪函數(shù)是奇函數(shù),則是定義域上的增函數(shù),其中正確的結(jié)論的序號(hào)是_________(將所有正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)的“燃油效率”是指汽車(chē)每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車(chē)在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車(chē)最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車(chē)中,甲車(chē)消耗汽油最多
C. 甲車(chē)以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車(chē)最高限速80千米/小時(shí). 相同條件下,在該市用丙車(chē)比用乙車(chē)更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(I)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(II)若函數(shù)有兩個(gè)極值點(diǎn)且,求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為調(diào)查新生嬰兒健康狀況,隨機(jī)抽取6名8個(gè)月齡嬰兒稱(chēng)量體重(單位:千克),稱(chēng)量結(jié)果分別為6,8,9,9,9.5,10.已知8個(gè)月齡嬰兒體重超過(guò)7.2千克,不超過(guò)9.8千克為“標(biāo)準(zhǔn)體重”,否則為“不標(biāo)準(zhǔn)體重”.
(1)根據(jù)樣本估計(jì)總體思想,將頻率視為概率,若從該地區(qū)全部8個(gè)月齡嬰兒中任取3名進(jìn)行稱(chēng)重,則至少有2名嬰兒為“標(biāo)準(zhǔn)體重”的概率是多少?
(2)從抽取的6名嬰兒中,隨機(jī)選取4名,設(shè)X表示抽到的“標(biāo)準(zhǔn)體重”人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)判斷函數(shù)能否有3個(gè)零點(diǎn)?若能,求出的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中, 平面, , , , , , 是的中點(diǎn), 在線段上,且滿足.
(1)求證: 平面;
(2)求二面角的余弦值;
(3)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線:的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)的兩條直線、分別交拋物線于點(diǎn)、和、,線段和的中點(diǎn)分別為、.如果直線與的傾斜角互余,求證:直線經(jīng)過(guò)一定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com