分析 (1)利用an=Sn-Sn-1,化簡已知條件,轉(zhuǎn)化推出$\frac{1}{Sn}$-$\frac{1}{Sn-1}$=2.即可證明數(shù)列是等差數(shù)列;
(2)利用(1)求出數(shù)列的和,通過已知條件轉(zhuǎn)化求解即可.
解答 證明:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1,
又an+2Sn•Sn-1=0,所以Sn-Sn-1+2Sn•Sn-1=0.
若Sn=0,則a1=S1=0與a1=$\frac{1}{2}$矛盾.
故Sn≠0,所以$\frac{1}{Sn}$-$\frac{1}{Sn-1}$=2.
又$\frac{1}{S1}$=2,所以{$\frac{1}{Sn}$}是首項(xiàng)為2,公差為2的等差數(shù)列.-----(6分)
(2)解:由(1)得$\frac{1}{Sn}$=2+(n-1)•2=2n,
故Sn=$\frac{1}{2n}$(n∈N+).
當(dāng)n≥2時(shí),an=-2Sn•Sn-1=-2•$\frac{1}{2n}$•$\frac{1}{2(n-1)}$
=-$\frac{1}{2n(n-1)}$;
當(dāng)n=1時(shí),a1=$\frac{1}{2}$.
所以an=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{-\frac{1}{2n(n-1)},n≥2}\end{array}\right.$.----(12分)
點(diǎn)評 本題考查數(shù)列的遞推關(guān)系式以及通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-$\frac{3}{2}$)<f(-1)<f(2) | B. | f(-1)<f($\frac{3}{2}$)<f(-1)<f(2) | C. | f(2)<f(-1)<f(-$\frac{3}{2}$) | D. | f(-2)<f($\frac{3}{2}$)<f(-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e30 | B. | e${\;}^{\frac{100}{3}}$ | C. | e${\;}^{\frac{110}{3}}$ | D. | e40 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com