18.下列各值中,比tan$\frac{π}{5}$大的是( 。
A.tan(-$\frac{π}{7}$)B.tan$\frac{9π}{8}$C.tan35°D.tan(-142°)

分析 使用正切函數(shù)周期性和單調(diào)性比較大。

解答 解:tan$\frac{π}{5}$=tan36°.
對于A,tan(-$\frac{π}{7}$)=-tan$\frac{π}{7}$<0,而tan$\frac{π}{5}$>0,故tan(-$\frac{π}{7}$)<tan$\frac{π}{5}$.
對于B,tan$\frac{9π}{8}$=tan$\frac{π}{8}$,∵0<$\frac{π}{8}<\frac{π}{5}$$<\frac{π}{2}$,∴tan$\frac{π}{8}<$tan$\frac{π}{5}$.
對于C,∵0°<35°<36°<90°,∴tan35°<tan36°.
對于D,tan(-142°)=tan38°,∵0°<36°<38°<90°,
∴tan38°>tan36°,
故選:D.

點評 本題考查了正切函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)+$\frac{{\sqrt{3}}}{2}$cos(2x-$\frac{π}{3}$)是( 。
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為 π的偶函數(shù)D.最小正周期為 π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解關(guān)于x的不等式x2+(m-m2)x-m3>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(0,3),B(0,2),求$\overrightarrow{a}$使$\overrightarrow{a}$=($\overrightarrow{AB}$+$\overrightarrow{MB}$)+($\overrightarrow{BO}$+$\overrightarrow{OM}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在(x2-x+1)5的展開式中,x3的系數(shù)為-30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點D,問如何在BC上找到一點M,使得兩條小路所在直線AC與DM相互垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.等比數(shù)列{an}中,a1=-27,q=-$\frac{1}{3}$,Sn=-20,求n,an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=log(1-2cosx)(2sinx+1)的定義域為{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=4,$\overrightarrow a$⊥($\overrightarrow b$-$\overrightarrow a$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角是$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案