已知關(guān)于x的函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)a取值范圍.
(1)函數(shù)的極小值為;(2).

試題分析:(1),當(dāng) 時(shí),
可利用導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)性并求得極值;
(2)要使函數(shù)沒有零點(diǎn),可借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,參數(shù)的值要確保在定義域內(nèi)恒正(或恒負(fù)),即函數(shù)的最小值為正,或最大值為負(fù),并由此求出的取值范圍.
試題解析:
解:(1).  2分
當(dāng)時(shí),,的情況如下表:


2



0



極小值

所以,當(dāng)時(shí),函數(shù)的極小值為.  6分
(2).       7分
當(dāng)時(shí),的情況如下表:


2



0



極小值

因?yàn)?i>F(1)=1>0,  8分
若使函數(shù)F(x)沒有零點(diǎn),需且僅需,解得, 9分
所以此時(shí);10分
當(dāng)時(shí),的情況如下表:


2



0



極大值

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042137179617.png" style="vertical-align:middle;" />,且,
所以此時(shí)函數(shù)總存在零點(diǎn). 12分
(或:當(dāng)時(shí),
當(dāng)時(shí),令
由于
,即時(shí),即時(shí)存在零點(diǎn).)
綜上所述,所求實(shí)數(shù)a的取值范圍是.13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在(0,1)上單調(diào)遞減.
(1)求a的取值范圍;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)y=f(x)圖像上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍;
(3)求證:(其中,e是自然數(shù)對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)求的單調(diào)增區(qū)間
(2)若內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)求的單調(diào)區(qū)間;
(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù).當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)> 0,且g(-3)=0,則不等式f(x)g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為R上的可導(dǎo)函數(shù),且滿足,對(duì)任意正實(shí)數(shù),下面不等式恒成立的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-axb
axln x,f(e)=2.
①求b;②求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的導(dǎo)數(shù)為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案