已知函數(shù)f(x)=ax2+ln(x+1).
(1)當a=時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當時,函數(shù)y=f(x)圖像上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍;
(3)求證:(其中,e是自然數(shù)對數(shù)的底數(shù))
(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)(3)見解析

試題分析:
(1)函數(shù)f(x)是二次與對數(shù)的結合,求單調(diào)性可以利用導數(shù),以此先求定義域,求導,求導函數(shù)大于0與小于0分別求出單調(diào)遞增與單調(diào)遞減區(qū)間.
(2)要使得函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),則當時,
不等式恒成立即可,即轉(zhuǎn)化了恒成立問題,則只需要,故考慮對求導求單調(diào)性來確定函數(shù)在上的最大值,因為導函數(shù)含有參數(shù)a,所以在求解單調(diào)性確定最值的過程中需要討論a的范圍,討論需從兩根的大小和0的大小進行分析才能確定的最值,從而得到a的取值范圍.
(3)考慮把不等式兩邊同時去對數(shù)再證明,即證明,利用對數(shù)的乘法公式可以把不等式的左邊化解成為不可求和數(shù)列的和,在利用利用(2)得到當a=0時,ln(1+x)是恒成立的,把不可求和數(shù)列放縮成為可以裂項求和的數(shù)列,裂項利用,進而證明原不等式.
試題解析:
(1)當時,),
),  1分
解得,由解得
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.  3分
(2)因函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),則當時,
不等式恒成立,即恒成立,
),只需即可.  4分
,
(ⅰ)當時,,當時,,
函數(shù)上單調(diào)遞減,故成立.   5分
(ⅱ)當時,由,因,所以
,即時,在區(qū)間上,,則函數(shù)上單調(diào)遞增,
上無最大值(或:當時,),此時不滿足條件;
②若,即時,函數(shù)上單調(diào)遞減,
在區(qū)間上單調(diào)遞增,同樣上無最大值,不滿足條件.   8分
(ⅲ)當時,由,∵,∴,
,故函數(shù)上單調(diào)遞減,故成立.
綜上所述,實數(shù)的取值范圍是.   10分
(3)據(jù)(2)知當時,上恒成立.
(或另證在區(qū)間上恒成立),   11分
,




,
.       14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)若對于任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)).
(1)試討論函數(shù)的單調(diào)性;
(2)設函數(shù),,當函數(shù)有零點時,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)若直線恰好為曲線的切線時,求實數(shù)的值;
(2)當,時(其中無理數(shù)),恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)上是減函數(shù),在上是增函數(shù),函數(shù)上有三個零點,且是其中一個零點.
(1)求的值;
(2)求的取值范圍;
(3)設,且的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1)若關于x的不等式有實數(shù)解,求實數(shù)m的取值范圍;
(2)設,若關于x的方程至少有一個解,求p的最小值.
(3)證明不等式:    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知關于x的函數(shù)
(1)當時,求函數(shù)的極值;
(2)若函數(shù)沒有零點,求實數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若的極值點,求的值;
(2)若的圖象在點處的切線方程為,
①求在區(qū)間上的最大值;
②求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案